1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen H, Guan R, Lei Y, Chen J, Ge Q, Zhang
X, Dou R, Chen H, Liu H, Qi X, et al: Lymphangiogenesis in gastric
cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis. BMC Cancer.
15:1032015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Johnson SM and Evers BM: Translational
research in gastric malignancy. Surg Oncol Clin N Am. 17:323–340.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kim K, Chun KH, Suh PG and Kim IH:
Alterations in cell proliferation related gene expressions in
gastric cancer. Crit Rev Eukaryot Gene Expr. 21:237–254. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim DH: Prognostic implications of cyclin
B1, p34cdc2, p27Kip1 and p53 expression in gastric cancer. Yonsei
Med J. 48:694–700. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liang B, Wang S, Yang X, Ye Y, Yu Y and
Cui Z: Expressions of cyclin E, cyclin dependent kinase 2 and
p57KIP2 in human gastric cancer. Chin Med J. 116:20–23.
2003.PubMed/NCBI
|
7
|
Malumbres M and Barbacid M: Cell cycle,
CDKs and cancer: A changing paradigm. Nat Rev Cancer. 9:153–166.
2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Lapenna S and Giordano A: Cell cycle
kinases as therapeutic targets for cancer. Nat Rev Drug Discov.
8:547–566. 2009. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Wright RH, Castellano G, Bonet J, Le Dily
F, Font-Mateu J, Ballaré C, Nacht AS, Soronellas D, Oliva B and
Beato M: CDK2-dependent activation of PARP-1 is required for
hormonal gene regulation in breast cancer cells. Genes Dev.
26:1972–1983. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang S, Zhang L, Liu M, Chong R, Ding SJ,
Chen Y and Dong J: CDK1 phosphorylation of YAP promotes mitotic
defects and cell motility and is essential for neoplastic
transformation. Cancer Res. 73:6722–6733. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cepeda D, Ng HF, Sharifi HR, Mahmoudi S,
Cerrato VS, Fredlund E, Magnusson K, Nilsson H, Malyukova A,
Rantala J, et al: CDK-mediated activation of the SCFFBXO (28)
ubiquitin ligase promotes MYC-driven transcription and
tumourigenesis and predicts poor survival in breast cancer. EMBO
Mol Med. 5:1067–1086. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lu M, Breyssens H, Salter V, Zhong S, Hu
Y, Baer C, Ratnayaka I, Sullivan A, Brown NR, Endicott J, et al:
Restoring p53 function in human melanoma cells by inhibiting MDM2
and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell.
30:822–823. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Radomska HS, Alberich-Jordà M, Will B,
Gonzalez D, Delwel R and Tenen DG: Targeting CDK1 promotes
FLT3-activated acute myeloid leukemia differentiation through
C/EBPα. J Clin Invest. 122:2955–2966. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sheppard KE and McArthur GA: The
cell-cycle regulator CDK4: An emerging therapeutic target in
melanoma. Clin Cancer Res. 19:5320–5328. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rader J, Russell MR, Hart LS, Nakazawa MS,
Belcastro LT, Martinez D, Li Y, Carpenter EL, Attiyeh EF, Diskin
SJ, et al: Dual CDK4/CDK6 inhibition induces cell-cycle arrest and
senescence in neuroblastoma. Clin Cancer Res. 19:6173–6182. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Sakaue-Sawano A, Kurokawa H, Morimura T,
Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi
H, et al: Visualizing spatiotemporal dynamics of multicellular
cell-cycle progression. Cell. 132:487–498. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tetsu O and McCormick F: Proliferation of
cancer cells despite CDK2 inhibition. Cancer Cell. 3:233–245. 2003.
View Article : Google Scholar : PubMed/NCBI
|
18
|
van den Heuvel S and Harlow E: Distinct
roles for cyclin-dependent kinases in cell cycle control. Science.
262:2050–2054. 1993. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hellmich MR, Pant HC, Wada E and Battey
JF: Neuronal cdc2-like kinase: A cdc2-related protein kinase with
predominantly neuronal expression. Proc Natl Acad Sci USA.
89:10867–10871. 1992. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dhavan R and Tsai LH: A decade of CDK5.
Nat Rev Mol Cell Biol. 2:749–759. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Strock CJ, Park JI, Nakakura EK, Bova GS,
Isaacs JT, Ball DW and Nelkin BD: Cyclin-dependent kinase 5
activity controls cell motility and metastatic potential of
prostate cancer cells. Cancer Res. 66:7509–7515. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pozo K, Castro-Rivera E, Tan C, Plattner
F, Schwach G, Siegl V, Meyer D, Guo A, Gundara J, Mettlach G, et
al: The role of Cdk5 in neuroendocrine thyroid cancer. Cancer Cell.
24:499–511. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ehrlich SM, Liebl J, Ardelt MA, Lehr T, De
Toni EN, Mayr D, Brandl L, Kirchner T, Zahler S, Gerbes AL and
Vollmar AM: Targeting cyclin dependent kinase 5 in hepatocellular
carcinoma-A novel therapeutic approach. J Hepatol. 63:102–113.
2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Feldmann G, Mishra A, Hong SM, Bisht S,
Strock CJ, Ball DW, Goggins M, Maitra A and Nelkin BD: Inhibiting
the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation
and progression through the suppression of Ras-Ral signaling.
Cancer Res. 70:4460–4469. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Demelash A, Rudrabhatla P, Pant HC, Wang
X, Amin ND, McWhite CD, Naizhen X and Linnoila RI: Achaete-scute
homologue-1 (ASH1) stimulates migration of lung cancer cells
through Cdk5/p35 pathway. Mol Biol Cell. 23:2856–2866. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Cao L, Zhou J, Zhang J, Wu S, Yang X, Zhao
X, Li H, Luo M, Yu Q, Lin G, et al: Cyclin-dependent kinase 5
decreases in gastric cancer and its nuclear accumulation suppresses
gastric tumorigenesis. Clinical Cancer Res. 21:1419–1428. 2015.
View Article : Google Scholar
|
27
|
Seshacharyulu P, Pandey P, Datta K and
Batra SK: Phosphatase: PP2A structural importance, regulation and
its aberrant expression in cancer. Cancer Lett. 335:9–18. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhou X, Updegraff BL, Guo Y, Peyton M,
Girard L, Larsen JE, Xie XJ, Zhou Y, Hwang TH, Xie Y, et al:
PROTOCADHERIN 7 acts through SET and PP2A to potentiate MAPK
signaling by EGFR and KRAS during lung tumorigenesis. Cancer Res.
77:187–197. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Baldacchino S, Saliba C, Petroni V, Fenech
AG, Borg N and Grech G: Deregulation of the phosphatase, PP2A is a
common event in breast cancer, predicting sensitivity to FTY720.
EPMA J. 5:32014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cristóbal I, Manso R, Rincón R, Caramés C,
Senin C, Borrero A, Martínez-Useros J, Rodriguez M, Zazo S,
Aguilera O, et al: PP2A inhibition is a common event in colorectal
cancer and its restoration using FTY720 shows promising therapeutic
potential. Mol Cancer Ther. 13:938–947. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tsuchiya A, Kanno T, Shimizu T, Nakao S,
Tanaka A, Tabata C, Nakano T and Nishizaki T: A novel PP2A enhancer
induces caspase-independent apoptosis of MKN28 gastric cancer cells
with high MEK activity. Cancer Lett. 347:123–128. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lombardo Y, Filipović A, Molyneux G,
Periyasamy M, Giamas G, Hu Y, Trivedi PS, Wang J, Yagüe E, Michel L
and Coombes RC: Nicastrin regulates breast cancer stem cell
properties and tumor growth in vitro and in vivo. Proc Natl Acad
Sci USA. 109:16558–16563. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Edge S, Byrd DR, Compton CC, Fritz AG,
Greene F and Trotti A: AJCC Cancer Staging Handbook: From the AJCC
Cancer Staging Manual. 7th. Springer-Verlag; New York: 2010
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lei W, Wang ZL, Feng HJ, Lin XD, Li CZ and
Fan D: Long non-coding RNA SNHG12 promotes the proliferation and
migration of glioma cells by binding to HuR. Int J Oncol.
53:1374–1384. 2018.PubMed/NCBI
|
36
|
Li Y, Gong J, Zhang Q, Lu Z, Gao J, Li Y,
Cao Y and Shen L: Dynamic monitoring of circulating tumour cells to
evaluate therapeutic efficacy in advanced gastric cancer. Br J
Cancer. 114:138–145. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fujiwara Y, Okada K, Omori T, Sugimura K,
Miyata H, Ohue M, Kobayashi S, Takahashi H, Nakano H, Mochizuki C,
et al: Multiple therapeutic peptide vaccines for patients with
advanced gastric cancer. Int J Oncol. 50:1655–1662. 2017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Liang Q, Li L, Zhang J, Lei Y, Wang L, Liu
DX, Feng J, Hou P, Yao R, Zhang Y, et al: CDK5 is essential for
TGF-β1-induced epithelial-mesenchymal transition and breast cancer
progression. Sci Rep. 3:29322013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hsu FN, Chen MC, Lin KC, Peng YT, Li PC,
Lin E, Chiang MC, Hsieh JT and Lin H: Cyclin-dependent kinase 5
modulates STAT3 and androgen receptor activation through
phosphorylation of Ser727 on STAT3 in prostate cancer
cells. Am J Physiol Endocrinol Metab. 305:E975–E986. 2013.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang J, Li H, Yabut O, Fitzpatrick H,
D'Arcangelo G and Herrup K: Cdk5 suppresses the neuronal cell cycle
by disrupting the E2F1-DP1 complex. J Neurosci. 30:5219–5228. 2010.
View Article : Google Scholar : PubMed/NCBI
|