1
|
Skaar JR, Pagan JK and Pagano M: SCF
ubiquitin ligase-targeted therapies. Nat Rev Drug Discov.
13:889–903. 2014. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Lipkowitz S and Weissman AM: RINGs of good
and evil: RING finger ubiquitin ligases at the crossroads of tumour
suppression and oncogenesis. Nat Rev Cancer. 11:629–643. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim D, Hong A, Park HI, Shin WH, Yoo L,
Jeon SJ and Chung KC: Deubiquitinating enzyme USP22 positively
regulates c-Myc stability and tumorigenic activity in mammalian and
breast cancer cells. J Cell Physiol. 232:3664–3676. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang QX, Wang XC, Chen SP and Qin XT:
Predictive value of deubiquitination enzymes USP37 in the prognosis
of breast cancer. Zhonghua Yi Xue Za Zhi. 96:944–948. 2016.(In
Chinese). PubMed/NCBI
|
5
|
Schoenfeld AR, Apgar S, Dolios G, Wang R
and Aaronson SA: BRCA2 is ubiquitinated in vivo and interacts with
USP11, a deubiquitinating enzyme that exhibits prosurvival function
in the cellular response to DNA damage. Mol Cell Biol.
24:7444–7455. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bayraktar S, Gutierrez Barrera AM, Liu D,
Pusztai L, Litton J, Valero V, Hunt K, Hortobagyi GN, Wu Y, Symmans
F, et al: USP-11 as a predictive and prognostic factor following
neoadjuvant therapy in women with breast cancer. Cancer J.
19:10–17. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim MS, Yoo KJ, Kang I, Chung HM and Baek
KH: A novel cysteine protease HeLa DUB-1 responsible for cleaving
the ubiquitin in human ovarian cancer cells. Int J Oncol.
25:373–379. 2004.PubMed/NCBI
|
8
|
Ramakrishna S, Suresh B and Baek KH: The
role of deubiquitinating enzymes in apoptosis. Cell Mol Life Sci.
68:15–26. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu HC, Lin YC, Liu CH, Chung HC, Wang YT,
Lin YW, Ma HI, Tu PH, Lawler SE and Chen RH: USP11 regulates PML
stability to control Notch-induced malignancy in brain tumours. Nat
Commun. 5:32142014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun W, Tan X, Shi Y, Xu G, Mao R, Gu X,
Fan Y, Yu Y, Burlingame S, Zhang H, et al: USP11 negatively
regulates TNFalpha-induced NF-kappaB activation by targeting on
IkappaBalpha. Cell Signal. 22:386–394. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Al-Salihi MA, Herhaus L, Macartney T and
Sapkota GP: USP11 augments TGFbeta signalling by deubiquitylating
ALK5. Open Biol. 2:1200632012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gupta GP and Massague J: Cancer
metastasis: Building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Brabletz T, Kalluri R, Nieto MA and
Weinberg RA: EMT in cancer. Nat Rev Cancer. 18:128–134. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Peinado H, Olmeda D and Cano A: Snail, Zeb
and bHLH factors in tumour progression: An alliance against the
epithelial phenotype? Nat Rev Cancer. 7:415–428. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nagaishi M, Nakata S, Ono Y, Hirata K,
Tanaka Y, Suzuki K, Yokoo H and Hyodo A: Tumoral and stromal
expression of Slug, ZEB1, and ZEB2 in brain metastasis. J Clin
Neurosci. 46:124–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Grzegrzolka J, Biala M, Wojtyra P,
Kobierzycki C, Olbromski M, Gomulkiewicz A, Piotrowska A, Rys J,
Podhorska-Okolow M and Dziegiel P: Expression of EMT markers SLUG
and TWIST in breast cancer. Anticancer Res. 35:3961–3968.
2015.PubMed/NCBI
|
17
|
Soule HD, Vazguez J, Long A, Albert S and
Brennan M: A human cell line from a pleural effusion derived from a
breast carcinoma. J Natl Cancer Inst. 51:1409–1416. 1973.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2ΔΔCT method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou Z, Luo A, Shrivastava I, He M, Huang
Y, Bahar I, Liu Z and Wan Y: Regulation of XIAP turnover reveals a
role for USP11 in promotion of tumorigenesis. EBioMedicine.
15:48–61. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang J, Mani SA, Donaher JL, Ramaswamy S,
Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A and
Weinberg RA: Twist, a master regulator of morphogenesis, plays an
essential role in tumor metastasis. Cell. 117:927–939. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zheng H and Kang Y: Multilayer control of
the EMT master regulators. Oncogene. 33:1755–1763. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Vetter G, Le Bechec A, Muller J, Muller A,
Moes M, Yatskou M, Al Tanoury Z, Poch O, Vallar L and Friederich E:
Time-resolved analysis of transcriptional events during
SNAI1-triggered epithelial to mesenchymal transition. Biochem
Biophys Res Commun. 385:485–491. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Naber HP, Drabsch Y, Snaar-Jagalska BE,
ten Dijke P, van Laar T, Snail and Slug: key regulators of
TGF-β-induced EMT, are sufficient for the induction of single-cell
invasion. Biochem Biophys Res Commun. 435:58–63. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Moody SE, Perez D, Pan TC, Sarkisian CJ,
Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD and
Chodosh LA: The transcriptional repressor Snail promotes mammary
tumor recurrence. Cancer Cell. 8:197–209. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Blanco MJ, Moreno-Bueno G, Sarrio D,
Locascio A, Cano A, Palacios J and Nieto MA: Correlation of snail
expression with histological grade and lymph node status in breast
carcinomas. Oncogene. 21:3241–3246. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lim KH, Suresh B, Park JH, Kim YS,
Ramakrishna S and Baek KH: Ubiquitin-specific protease 11 functions
as a tumor suppressor by modulating Mgl-1 protein to regulate
cancer cell growth. Oncotarget. 7:14441–14457. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhou BP, Deng J, Xia W, Xu J, Li YM,
Gunduz M and Hung MC: Dual regulation of Snail by
GSK-3beta-mediated phosphorylation in control of
epithelial-mesenchymal transition. Nat Cell Biol. 6:931–940. 2004.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh
CH, Chiu PH, Chen NJ and Yang MH: Acetylation of snail modulates
the cytokinome of cancer cells to enhance the recruitment of
macrophages. Cancer Cell. 26:534–548. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gudey SK, Sundar R, Mu Y, Wallenius A,
Zang G, Bergh A, Heldin CH and Landström M: TRAF6 stimulates the
tumor-promoting effects of TGFβ type I receptor through
polyubiquitination and activation of presenilin 1. Sci Signal.
7:ra22014. View Article : Google Scholar : PubMed/NCBI
|