1
|
Brugarolas J, Lei K, Hurley RL, Manning
BD, Reiling JH, Hafen E, Witters LA, Ellisen LW and Kaelin WG Jr:
Regulation of mTOR function in response to hypoxia by REDD1 and the
TSC1/TSC2 tumor suppressor complex. Genes Dev. 18:2893–2904. 2004.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Reiling JH and Hafen E: The
hypoxia-induced paralogs Scylla and Charybdis inhibit growth by
down-regulating S6K activity upstream of TSC in Drosophila.
Genes Dev. 18:2879–2892. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ellisen LW, Ramsayer KD, Johannessen CM,
Yang A, Beppu H, Minda K, Oliner JD, McKeon F and Haber DA:
REDD1, a developmentally regulated transcriptional target of
p63 and p53, links p63 to regulation of reactive oxygen species.
Mol Cell. 10:995–1005. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sofer A, Lei K, Johannessen CM and Ellisen
LW: Regulation of mTOR and cell growth in response to energy stress
by REDD1. Mol Cell Biol. 25:5834–5845. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
DeYoung MP, Horak P, Sofer A, Sgroi D and
Ellisen LW: Hypoxia regulates TSC1/2-mTOR signaling and tumor
suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev.
22:239–251. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Corradetti MN, Inoki K and Guan KL: The
stress-inducted proteins RTP801 and RTP801L are negative regulators
of the mammalian target of rapamycin pathway. J Biol Chem.
280:9769–9772. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jia W, Chang B, Sun L, Zhu H, Pang L, Tao
L, Zou H, Du J, Dong Y, Qi Y, et al: REDD1 and p-AKT
over-expression may predict poor prognosis in ovarian cancer. Int J
Clin Exp Pathol. 7:5940–5949. 2014.PubMed/NCBI
|
8
|
Decaux O, Clément M, Magrangeas F, Gouraud
W, Charbonnel C, Campion L, Loiseau HA and Minvielle S: Inhibition
of mTORC1 activity by REDD1 induction in myeloma cells resistant to
bortezomib cytotoxicity. Cancer Sci. 101:889–897. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Barakat DJ, Mendonca J, Barberi T, Zhang
J, Kachhap SK, Paz-Priel I and Friedman AD: C/EBPβ regulates
sensitivity to bortezomib in prostate cancer cells by inducing
REDD1 and autophagosome-lysosome fusion. Cancer Lett.
375:152–161. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pinto JA, Rolfo C, Raez LE, Prado A,
Araujo JM, Bravo L, Fajardo W, Morante ZD, Aguilar A, Neciosup SP,
et al: In silico evaluation of DNA Damage Inducible Transcript 4
gene (DDIT4) as prognostic biomarker in several
malignancies. Sci Rep. 7:15262017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jin HO, Hong SE, Kim JH, Choi HN, Kim K,
An S, Choe TB, Hwang CS, Lee JH, Kim JI, et al: Sustained
overexpression of Redd1 leads to Akt activation involved in cell
survival. Cancer Lett. 336:319–324. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vahid S, Thaper D, Gibson KF, Bishop JL
and Zoubeidi A: Molecular chaperone Hsp27 regulates the Hippo tumor
suppressor pathway in cancer. Sci Rep. 6:318422016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Seigneuric R, Mjahed H, Gobbo J, Joly AL,
Berthenet K, Shirley S and Garrido C: Heat shock proteins as danger
signals for cancer detection. Front Oncol. 1:372011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Garrido C, Brunet M, Didelot C, Zermati Y,
Schmitt E and Kroemer G: Heat shock proteins 27 and 70:
Anti-apoptotic proteins with tumorigenic properties. Cell Cycle.
5:2592–2601. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lianos GD, Alexiou GA, Mangano A, Mangano
A, Rausei S, Boni L, Dionigi G and Roukos DH: The role of heat
shock proteins in cancer. Cancer Lett. 360:114–118. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Jin HO, Seo SK, Woo SH, Kim ES, Lee HC,
Yoo DH, Choe TB, Hong SI, Kim JI and Park IC: SP600125 negatively
regulates the mammalian target of rapamycin via ATF4-induced Redd1
expression. FEBS Lett. 583:123–127. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sheng B, Qi C, Liu B, Lin Y, Fu T and Zeng
Q: Increased HSP27 correlates with malignant biological behavior of
non-small cell lung cancer and predicts patient's survival. Sci
Rep. 7:138072017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Endo H, Yano M, Okumura Y and Kido H:
Ibuprofen enhances the anticancer activity of cisplatin in lung
cancer cells by inhibiting the heat shock protein 70. Cell Death
Dis. 5:e10272014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mehta A, Shervington L, Munje C and
Shervington A: A novel therapeutic strategy for the treatment of
glioma, combining chemical and molecular targeting of hsp90a.
Cancers. 3:4228–4244. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Parcellier A, Schmitt E, Brunet M, Hammann
A, Solary E and Garrido C: Small heat shock proteins HSP27 and
alphaB- crystallin: Cytoprotective and oncogenic functions.
Antioxid Redox Signal. 7:404–413. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Santarosa M, Favaro D, Quaia M and
Galligioni E: Expression of heat shock protein 72 in renal cell
carcinoma: Possible role and prognostic implications in cancer
patients. Eur J Cancer. 33:873–877. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Nanbu K, Konishi I, Mandai M, Kuroda H,
Hamid AA, Komatsu T and Mori T: Prognostic significance of heat
shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer
Detect Prev. 22:549–555. 1998. View Article : Google Scholar : PubMed/NCBI
|
24
|
Su J, Huang H, Ju S and Shi J: Elevated
RTP801 promotes cell proliferation in non-small cell lung cancer.
IUBMB Life. 70:310–319. 2018. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Rane MJ, Pan Y, Singh S, Powell DW, Wu R,
Cummins T, Chen Q, McLeish KR and Klein JB: Heat shock protein 27
controls apoptosis by regulating Akt activation. J Biol Chem.
278:27828–27835. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang Y and Shen X: Heat shock protein 27
protects L929 cells from cisplatin-induced apoptosis by enhancing
Akt activation and abating suppression of thioredoxin reductase
activity. Clin Cancer Res. 13:2855–2864. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Aloy MT, Hadchity E, Bionda C, Diaz-Latoud
C, Claude L, Rousson R, Arrigo AP and Rodriguez-Lafrasse C:
Protective role of Hsp27 protein against gamma radiation-induced
apoptosis and radiosensitization effects of Hsp27 gene silencing in
different human tumor cells. Int J Radiat Oncol Biol Phys.
70:543–553. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Heinrich JC, Tuukkanen A, Schroeder M,
Fahrig T and Fahrig R: RP101 (brivudine) binds to heat shock
protein HSP27 (HSPB1) and enhances survival in animals and
pancreatic cancer patients. J Cancer Res Clin Oncol. 137:1349–1361.
2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schultz CR, Golembieski WA, King DA, Brown
SL, Brodie C and Rempel SA: Inhibition of HSP27 alone or in
combination with pAKT inhibition as therapeutic approaches to
target SPARC-induced glioma cell survival. Mol Cancer. 11:202012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu R, Kausar H, Johnson P, Montoya-Durango
DE, Merchant M and Rane MJ: Hsp27 regulates Akt activation and
polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt
signal complex. J Biol Chem. 282:21598–21608. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Powers MV, Clarke PA and Workman P: Dual
targeting of HSC70 and HSP72 inhibits HSP90 function and induces
tumor-specific apoptosis. Cancer Cell. 14:250–262. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chatterjee M, Andrulis M, Stühmer T,
Müller E, Hofmann C, Steinbrunn T, Heimberger T, Schraud H,
Kressmann S, Einsele H and Bargou RC: The PI3K/Akt signaling
pathway regulates the expression of Hsp70, which critically
contributes to Hsp90-chaperone function and tumor cell survival in
multiple myeloma. Haematologica. 98:1132–1141. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ghosh A, Lai C, McDonald S, Suraweera N,
Sengupta N, Propper D, Dorudi S and Silver A: HSP27 expression in
primary colorectal cancers is dependent on mutation of KRAS
and PI3K/AKT activation status and is independent of TP53.
Exp Mol Pathol. 94:103–108. 2013. View Article : Google Scholar : PubMed/NCBI
|