1
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella- Branger D, Cavenee WK, Ohgaki H, Wiestler
OD, Kleihues P and Ellison DW: The 2016 World Health Organization
Classification of Tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stupp R, Brada M, van den Bent MJ, Tonn JC
and Pentheroudakis G; ESMO Guidelines Working Group, : High-grade
glioma: ESMO clinical practice guidelines for diagnosis, treatment
and follow-up. Ann Oncol. 25 (Suppl 3):iii93–iii101. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rycaj K and Tang DG: Cancer stem cells and
radioresistance. Int J Radiat Biol. 90:615–621. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chang L, Graham P, Hao J, Ni J, Deng J,
Bucci J, Malouf D, Gillatt D and Li Y: Cancer stem cells and
signaling pathways in radio-resistance. Oncotarget. 7:11002–11017.
2016.PubMed/NCBI
|
6
|
Friedmann-Morvinski D: Glioblastoma
heterogeneity and cancer cell plasticity. Crit Rev Oncog.
19:327–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bryukhovetskiy I, Ponomarenko A, Lyakhova
I, Zaitsev S, Zayats Y, Korneyko M, Eliseikina M, Mischenko P,
Shevchenko V, Shanker Sharma H, et al: Personalized regulation of
glioblastoma cancer stem cells based on biomedical technologies:
From theory to experiment (Review). Int J Mol Med. 42:691–702.
2018.PubMed/NCBI
|
8
|
Bradshaw A, Wickremesekera A, Brasch HD,
Chibnall AM, Davis PF, Tan ST and Itinteang T: Cancer stem cells in
glioblastoma multiforme. Front Surg. 3:482016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Brown DV, Filiz G, Daniel PM, Hollande F,
Dworkin S, Amiridis S, Kountouri N, Ng W, Morokoff AP and
Mantamadiotis T: Expression of CD133 and CD44 in glioblastoma stem
cells correlates with cell proliferation, phenotype stability and
intra-tumor heterogeneity. PLoS One. 12:e01727912017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Brown DV, Daniel PM, D'Abaco GM, Gogos A,
Ng W, Morokoff AP and Mantamadiotis T: Coexpression analysis of
CD133 and CD44 identifies proneural and mesenchymal subtypes of
glioblastoma multiforme. Oncotarget. 6:6267–6280. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bryukhovetskiy A, Shevchenko V, Kovalev S,
Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the
novel paradigm of proteome-based cell therapy of tumors: Through
comparative proteome mapping of tumor stem cells and
tissue-specific stem cells of humans. Cell Transplant. 23 (Suppl
1):S151–S170. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tan SH and Barker N: Wnt signaling in
adult epithelial stem cells and cancer. Prog Mol Biol Transl Sci.
153:21–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kahn M: Wnt signaling in stem cells and
cancer stem cells: A tale of two coactivators. Prog Mol Biol Transl
Sci. 153:209–244. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kretzschmar K and Clevers H: Wnt/β-catenin
signaling in adult mammalian epithelial stem cells. Dev Biol.
428:273–282. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mohammed MK, Shao C, Wang J, Wei Q, Wang
X, Collier Z, Tang S, Liu H, Zhang F, Huang J, et al: Wnt/β-catenin
signaling plays an ever-expanding role in stem cell self-renewal,
tumorigenesis and cancer chemoresistance. Genes Dis. 3:11–40. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim Y, Kim KH, Lee J, Lee YA, Kim M, Lee
SJ, Park K, Yang H, Jin J, Joo KM, et al: Wnt activation is
implicated in glioblastoma radioresistance. Lab Invest. 92:466–473.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kahlert UD, Suwala AK, Koch K, Natsumeda
M, Orr BA, Hayashi M, Maciaczyk J and Eberhart CG: Pharmacologic
Wnt inhibition reduces proliferation, survival, and clonogenicity
of glioblastoma cells. J Neuropathol Exp Neurol. 74:889–900. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Allen M, Bjerke M, Edlund H, Nelander S
and Westermark B: Origin of the U87MG glioma cell line: Good news
and bad news. Sci Transl Med. 8:354re32016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bryukhovetskiy I and Shevchenko V:
Molecular mechanisms of the effect of TGF-β1 on U87 human
glioblastoma cells. Oncol Lett. 12:1581–1590. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bryukhovetskiy IS, Dyuizen IV, Shevchenko
VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV and Khotimchenko
YS: Hematopoietic stem cells as a tool for the treatment of
glioblastoma multiforme. Mol Med Rep. 14:4511–4520. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Mizrak D1, Brittan M and Alison M: CD133:
Molecule of the moment. J Pathol. 214:3–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shmelkov SV, St Clair R, Lyden D and Rafii
S: AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 37:715–719.
2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang LS and Lum L: Chemical modulation of
WNT signaling in cancer. Prog Mol Biol Transl Sci. 153:245–269.
2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gong A and Huang S: FoxM1 and
Wnt/β-catenin signaling in glioma stem cells. Cancer Res.
72:5658–5662. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nikuseva-Martić T, Beros V, Pećina-Slaus
N, Pećina H and Bulić-Jakus F: Genetic changes of CDH1, APC, and
CTNNB1 found in human brain tumors. Pathol Res Pract. 203:779–787.
2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dipro S, Al-Otaibi F, Alzahrani A, Ulhaq A
and Al Shail E: Turcot syndrome: A synchronous clinical
presentation of glioblastoma multiforme and adenocarcinoma of the
colon. Case Rep Oncol Med. 2012:7202732012.PubMed/NCBI
|
27
|
Shi H, Gao Y, Tang Y, Wu Y, Gong H, Du J,
Zheng B, Hu J, Shi Q and Yu R: CacyBP/SIP protein is important for
the proliferation of human glioma cells. IUBMB Life. 66:286–291.
2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yan S, Li A and Liu Y: CacyBP/SIP inhibits
the migration and invasion behaviors of glioblastoma cells through
activating Siah1 mediated ubiquitination and degradation of
cytoplasmic p27. Cell Biol Int. 42:216–226. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tang Y, Zhan W, Cao T, Tang T, Gao Y, Qiu
Z, Fu C, Qian F, Yu R and Shi H: CacyBP/SIP inhibits
Doxourbicin-induced apoptosis of glioma cells due to activation of
ERK1/2. IUBMB Life. 68:211–219. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen Y, Zhang K, Wang X, Li Q, Wu Q and
Ning X: Cell cycle-dependent translocation and regulatory mechanism
of CacyBP/SIP in gastric cancer cells. Anticancer Drugs. 29:19–28.
2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nitta RT, Gholamin S, Feroze AH, Agarwal
M, Cheshier SH, Mitra SS and Li G: Casein kinase 2α regulates
glioblastoma brain tumor-initiating cell growth through the
β-catenin pathway. Oncogene. 34:3688–3699. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rowse AL, Gibson SA, Meares GP,
Rajbhandari R, Nozell SE, Dees KJ, Hjelmeland AB, McFarland BC and
Benveniste EN: Protein kinase CK2 is important for the function of
glioblastoma brain tumor initiating cells. J Neurooncol.
132:219–229. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ferrer-Font L, Villamañan L, Arias-Ramos
N, Vilardell J, Plana M, Ruzzene M, Pinna LA, Itarte E, Arús C and
Candiota AP: Targeting protein kinase CK2: Evaluating CX-4945
potential for GL261 glioblastoma therapy in immunocompetent mice.
Pharmaceuticals. 10(pii): E242017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chikano Y, Domoto T, Furuta T, Sabit H,
Kitano-Tamura A, Pyko IV, Takino T, Sai Y, Hayashi Y, Sato H, et
al: Glycogen synthase kinase 3β sustains invasion of glioblastoma
via the focal adhesion kinase, Rac1, and c-Jun N-terminal
kinase-mediated pathway. Mol Cancer Ther. 14:564–574. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao P, Li Q, Shi Z, Li C, Wang L, Liu X,
Jiang C, Qian X, You Y, Liu N, et al: GSK-3β regulates tumor growth
and angiogenesis in human glioma cells. Oncotarget. 6:31901–31915.
2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang Y, Wen YL, Ma JW, Ye JC, Wang X,
Huang JX, Meng CY, Xu XZ, Wang SX and Zhong XY: Tetrandrine
inhibits glioma stem-like cells by repressing β-catenin expression.
Int J Oncol. 50:101–110. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Náger M, Santacana M, Bhardwaj D, Valls J,
Ferrer I, Nogués P, Cantí C and Herreros J: Nuclear phosphorylated
Y142 β-catenin accumulates in astrocytomas and glioblastomas and
regulates cell invasion. Cell Cycle. 14:3644–3655. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kahlert UD, Mooney SM, Natsumeda M,
Steiger HJ and Maciaczyk J: Targeting cancer stem-like cells in
glioblastoma and colorectal cancer through metabolic pathways. Int
J Cancer. 140:10–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kierulf-Vieira KS, Sandberg CJ, Grieg Z,
Günther CC, Langmoen IA and Vik-Mo EO: Wnt inhibition is
dysregulated in gliomas and its re-establishment inhibits
proliferation and tumor sphere formation. Exp Cell Res. 340:53–61.
2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Buckley CD, Tan J, Anderson KL, Hanein D,
Volkmann N, Weis WI, Nelson WJ and Dunn AR: Cell adhesion. The
minimal cadherin-catenin complex binds to actin filaments under
force. Science. 346:12542112014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ji H, Wang J, Fang B, Fang X and Lu Z:
α-Catenin inhibits glioma cell migration, invasion, and
proliferation by suppression of β-catenin transactivation. J
Neurooncol. 103:445–451. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xu M, Yang X, Zhao J, Zhang J, Zhang S,
Huang H, Liu Y and Liu J: High expression of Cullin1 indicates poor
prognosis for NSCLC patients. Pathol Res Pract. 210:397–401. 2014.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Lai YJ, Tsai JC, Tseng YT, Wu MS, Liu WS,
Lam HI, Yu JH, Nozell SE and Benveniste EN: Small G protein Rac
GTPases regulate the maintenance of glioblastoma stem-like cells in
vitro and in vivo. Oncotarget. 8:18031–18049. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Serra N, Rosales R, Masana L and Vallvé
JC: Simvastatin Increases Fibulin-2 expression in human coronary
artery smooth muscle cells via RhoA/Rho-kinase signaling pathway
inhibition. PLoS One. 10:e01338752015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sizemore ST, Zhang M, Cho JH, Sizemore GM,
Hurwitz B, Kaur B, Lehman NL, Ostrowski MC, Robe PA, Miao W, et al:
Pyruvate kinase M2 regulates homologous recombination-mediated DNA
double-strand break repair. Cell Res. 28:1090–1102. 2018.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang Y, Che S, Cai G, He Y, Chen J and Xu
W: Expression and prognostic significance of CTBP2 in human
gliomas. Oncol Lett. 12:2429–2434. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dcona MM, Morris BL, Ellis KC and Grossman
SR: CtBP- an emerging oncogene and novel small molecule drug
target: Advances in the understanding of its oncogenic action and
identification of therapeutic inhibitors. Cancer Biol Ther.
18:379–391. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Patel J, Baranwal S, Love IM, Patel NJ,
Grossman SR and Patel BB: Inhibition of C-terminal binding protein
attenuates transcription factor 4 signaling to selectively target
colon cancer stem cells. Cell Cycle. 13:3506–3518. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Guo H, Zhang XY, Peng J, Huang Y, Yang Y,
Liu Y, Guo XX, Hao Q, An S and Xu TR: RUVBL1, a novel C-RAF-binding
protein, activates the RAF/MEK/ERK pathway to promote lung cancer
tumorigenesis. Biochem Biophys Res Commun. 498:932–939. 2018.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Matias PM, Baek SH, Bandeiras TM, Dutta A,
Houry WA, Llorca O and Rosenbaum J: The AAA+ proteins Pontin and
Reptin enter adult age: from understanding their basic biology to
the identification of selective inhibitors. Front Mol Biosci.
2:172015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Mao YQ and Houry WA: The role of pontin
and reptin in cellular physiology and cancer etiology. Front Mol
Biosci. 4:582017. View Article : Google Scholar : PubMed/NCBI
|