Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review)
- Authors:
- Hye‑Rim Lee
- Kwang‑Hyun Baek
-
Affiliations: Department of Biomedical Science, CHA University, CHA General Hospital, Seongnam, Gyeonggi 13488, Republic of Korea - Published online on: March 13, 2019 https://doi.org/10.3892/or.2019.7059
- Pages: 2625-2635
This article is mentioned in:
Abstract
Handgretinger R, Lang P and André MC: Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 127:3341–3349. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moretta L: Dissecting CD56dim human NK cells. Blood. 116:3689–3691. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kannan GS, Aquino-Lopez A and Lee DA: Natural killer cells in malignant hematology: A primer for the non-immunologist. Blood Rev. 31:1–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Farag SS, Fehniger TA, Ruggeri L, Velardi A and Caligiuri MA: Natural killer cell receptors: New biology and insights into the graft-versus-leukemia effect. Blood. 100:1935–1947. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sun PD: Structure and function of natural-killer-cell receptors. Immunol Res. 27:539–548. 2003. View Article : Google Scholar : PubMed/NCBI | |
Willcox BE, Thomas LM and Bjorkman PJ: Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol. 4:913–919. 2003. View Article : Google Scholar : PubMed/NCBI | |
Joyce MG, Tran P, Zhuravleva MA, Jaw J, Colonna M and Sun PD: Crystal structure of human natural cytotoxicity receptor NKp30 and identification of its ligand binding site. Proc Natl Acad Sci USA. 108:6223–6228. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suck G, Linn YC and Tonn T: Natural killer cells for therapy of leukemia. Transfus Med Hemother. 43:89–95. 2016. View Article : Google Scholar : PubMed/NCBI | |
Parham P and Moffett A: Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol. 13:133–144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Muntasel A, Ochoa MC, Cordeiro L, Berraondo P, López-Díaz de Cerio A, Cabo M, López-Botet M and Melero I: Targeting NK-cell checkpoints for cancer immunotherapy. Curr Opin Immunol. 45:73–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lanier LL: Natural killer cell receptor signaling. Curr Opin Immunol. 15:308–314. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sentman CL, Barber MA, Barber A and Zhang T: NK cell receptors as tools in cancer immunotherapy. Adv Cancer Res. 95:249–292. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vivier E, Nune JA and Vély F: Natural killer cell signaling pathways. Science. 306:1517–1519. 2004. View Article : Google Scholar : PubMed/NCBI | |
Linnartz B, Wang Y and Neumann H: Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimers Dis. 2010:5874632010.PubMed/NCBI | |
Pugh JL, Nemat-Gorgani N, Norman PJ, Guethlein LA and Parham P: Human NK cells downregulate Zap70 and Syk in response to prolonged activation or DNA damage. J Immunol. 200:1146–1158. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teresa Rios-Paredes: Use of NK cells in haematological cancer therapy. Faculty of Medicine University of Oslo. 2014. | |
Verneris MR and Miller JS: KIR B or not to be?…that is the question for ALL. Blood. 124:2623–2624. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gaafar A, Sheereen A, Almohareb F, Eldali A, Chaudhri N, Mohamed SY, Hanbali A, Shaheen M, Alfraih F, El Fakih R, et al: Prognostic role of KIR genes and HLA-C after hematopoietic stem cell transplantation in a patient cohort with acute myeloid leukemia from a consanguineous community. Bone Marrow Transplant. 58:1170–1179. 2018. View Article : Google Scholar | |
Long EO, Barber DF, Burshtyn DN, Faure M, Peterson M, Rajagopalan S, Renard V, Sandusky M, Stebbins CC, Wagtmann N, et al: Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunol Rev. 181:223–233. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, et al: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 295:2097–2100. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rajalingam R: Human diversity of killer cell immunoglobulin-like receptors and disease. Korean J Hematol. 46:216–228. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Xiao W and Tian Z: NK cell-based immunotherapy for cancer. Semin Immunol. 31:37–54. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ljunggren HG and Kärre K: In search of the missing self-MHC molecules and NK cell recognition. Immunol Today. 11:237–244. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bottino C, Dondero A, Bellora F, Moretta L, Locatelli F, Pistoia V, Moretta A and Castriconi R: Natural killer cells and neuroblastoma: tumor recognition, escape mechanisms, and possible novel immunotherapeutic approaches. Front Immunol. 5:562014. View Article : Google Scholar : PubMed/NCBI | |
Carotta S: Targeting NK cells for anticancer immunotherapy: Clinical and preclinical approaches. Front Immunol. 7:1522016. View Article : Google Scholar : PubMed/NCBI | |
Martinet L and Smyth MJ: Balancing natural killer cell activation through paired receptors. Nat Rev Immunol. 15:243–254. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shimasaki N, Coustan-Smith E, Kamiya T and Campana D: Expanded and armed natural killer cells for cancer treatment. Cytotherapy. 18:1422–1434. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Huang B and Shi J: Fas ligand and lytic granule differentially control cytotoxic dynamics of natural killer cell against cancer target. Oncotarget. 7:47163–47172. 2016.PubMed/NCBI | |
Childs RW and Carlsten M: Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: The force awakens. Nat Rev Drug Discov. 14:487–498. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nückel H, Switala M, Sellmann L, Horn PA, Dürig J, Dührsen U, Küppers R, Grosse-Wilde H and Rebmann V: The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. Leukemia. 24:1152–1159. 2010. View Article : Google Scholar : PubMed/NCBI | |
Burger JA and Gribben JG: The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: Insight into disease biology and new targeted therapies. Semin Cancer Biol. 24:71–81. 2014. View Article : Google Scholar : PubMed/NCBI | |
Osman AE, AlJuryyan A, Alharthi H and Almoshary M: Association between the killer cell immunoglobulin-like receptor a haplotype and childhood acute lymphoblastic leukemia. Hum Immunol. 78:510–514. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boissel N, Rea D, Tieng V, Dulphy N, Brun M, Cayuela JM, Rousselot P, Tamouza R, Le Bouteiller P, Mahon FX, et al: BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia. J Immunol. 176:5108–5116. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maru Y: Molecular biology of chronic myeloid leukemia. Cancer Sci. 103:1601–1610. 2012. View Article : Google Scholar : PubMed/NCBI | |
Danier AC, de Melo RP, Napimoga MH and Laguna-Abreu MT: The role of natural killer cells in chronic myeloid leukemia. Rev Bras Hematol Hemoter. 33:216–220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang CH, Liao YJ, Fan TH, Chiou TJ, Lin YH and Twu YC: A Developed NK-92MI cell line with Siglec-7neg phenotype exhibits high and sustainable cytotoxicity against leukemia cells. Int J Mol Sci. 19:E10732018. View Article : Google Scholar : PubMed/NCBI | |
O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, et al: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 348:994–1004. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rossignol A, Levescot A, Jacomet F, Robin A, Basbous S, Giraud C, Roy L, Guilhot F, Turhan AG, Barra A, et al: Evidence for BCR-ABL-dependent dysfunctions of iNKT cells from chronic myeloid leukemia patients. Eur J Immunol. 42:1870–1875. 2012. View Article : Google Scholar : PubMed/NCBI | |
Heaney NB and Holyoake TL: Therapeutic targets in chronic myeloid leukaemia. Hematol Oncol. 25:66–75. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pophali PA and Patnaik MM: The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J. 22:40–50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shapira T, Pereg D and Lishner M: How I treat acute and chronic leukemia in pregnancy. Blood Rev. 22:247–259. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goldman JM: How I treat chronic myeloid leukemia in the imatinib era. Blood. 110:2828–2837. 2007. View Article : Google Scholar : PubMed/NCBI | |
Garderet L, Santacruz R, Barbu V, van den Akker J, Carbonne B and Gorin NC: Two successful pregnancies in chronic myeloid leukemia patient treated with imatinib. Haematologica. 92:e9–e10. 2007. View Article : Google Scholar : PubMed/NCBI | |
Roth MS and Foon KA: Alpha interferon in the treatment of hematologic malignancies. Am J Med. 81:871–882. 1986. View Article : Google Scholar : PubMed/NCBI | |
Giallongo C, La Cava P, Tibullo D, Parrinello N, Barbagallo I, Del Fabro V, Stagno F, Conticello C, Romano A, Chiarenza A, et al: Imatinib increases cytotoxicity of melphalan and their combination allows an efficient killing of chronic myeloid leukemia cells. Eur J Haematol. 86:216–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Millicovsky G, DeSesso JM, Kleinman LI and Clark KE: Effects of hydroxyurea on hemodynamics of pregnant rabbits: A maternally mediated mechanism of embryotoxicity. Am J Obstet Gynecol. 140:747–752. 1981. View Article : Google Scholar : PubMed/NCBI | |
Thauvin-Robinet C, Maingueneau C, Robert E, Elefant E, Guy H, Caillot D, Casasnovas RO, Douvier S and Nivelon-Chevallier A: Exposure to hydroxyurea during pregnancy: A case series. Leukemia. 15:1309–1311. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yellu M, Pinkard S, Ghose A and Medlin S: CML in pregnancy: A case report using leukapheresis and literature review. Transfus Apher Sci. 53:289–292. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ali R, Ozkalemkaş F, Ozkocaman V, Ozçelik T, Ozan U, Kimya Y and Tunali A: Successful pregnancy and delivery in a patient with chronic myelogenous leukemia (CML), and management of CML with leukapheresis during pregnancy: A case report and review of the literature. Jpn J Clin Oncol. 34:215–217. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cayssials E and Guilhot F: Chronic myeloid leukemia: Immunobiology and novel immunotherapeutic approaches. BioDrugs. 31:143–149. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mahoney KM, Rennert PD and Freeman GJ: Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 14:561–584. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mumprecht S, Schürch C, Schwaller J, Solenthaler M and Ochsenbein AF: Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood. 114:1528–1536. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Chu S, Agarwal P, Campbell VL, Hopcroft L, Jørgensen HG, Lin A, Gaal K, Holyoake TL and Bhatia R: Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor-treated CML stem cells. Blood. 128:2671–2682. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ågerstam H, Hansen N, von Palffy S, Sandén C, Reckzeh K, Karlsson C, Lilljebjörn H, Landberg N, Askmyr M, Högberg C, et al: IL1RAP antibodies block IL-1-induced expansion of candidate CML stem cells and mediate cell killing in xenograft models. Blood. 128:2683–2693. 2016. View Article : Google Scholar : PubMed/NCBI | |
Arranz L, Arriero MD and Villatoro A: Interleukin-1β as emerging therapeutic target in hematological malignancies and potentially in their complications. Blood Rev. 31:306–317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao K, Yuan S, Yin L, Xia J and Xu K: Potential efficacy of human IL-1RAP specific CAR-T cell in eliminating leukemic stem cells of chronic myeloid leukemia. J Leukemia. 5:2322017. View Article : Google Scholar | |
Stramucci L and Perrotti D: Twisting IL-1 signaling to kill CML stem cells. Blood. 128:2592–2593. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tarafdar A, Hopcroft LE, Gallipoli P, Pellicano F, Cassels J, Hair A, Korfi K, Jørgensen HG, Vetrie D, Holyoake TL, et al: CML cells actively evade host immune surveillance through cytokine-mediated downregulation of MHCII expression. Blood. 129:199–208. 2017. View Article : Google Scholar : PubMed/NCBI | |
Levescot A, Flamant S, Basbous S, Jacomet F, Féraud O, Anne Bourgeois E, Bonnet ML, Giraud C, Roy L, Barra A, et al: BCR-ABL-induced deregulation of the IL-33/ST2 pathway in CD34+ progenitors from chronic myeloid leukemia patients. Cancer Res. 74:2669–2676. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rocca S, Carrà G, Poggio P, Morotti A and Brancaccio M: Targeting few to help hundreds: JAK, MAPK and ROCK pathways as druggable targets in atypical chronic myeloid leukemia. Mol Cancer. 17:402018. View Article : Google Scholar : PubMed/NCBI | |
Pierson BA and Miller JS: The role of autologous natural killer cells in chronic myelogenous leukemia. Leuk Lymphoma. 27:387–399. 1997. View Article : Google Scholar : PubMed/NCBI | |
Verfaillie C, Kay N, Miller W and McGlave P: Diminished A-LAK cytotoxicity and proliferation accompany disease progression in chronic myelogenous leukemia. Blood. 76:401–408. 1990.PubMed/NCBI | |
Pawelec G, Schneider E, Ehninger G, Rehbein A and Schmidt H: Partial correction of defective generation of lymphokine-activated killer cells in patients with chronic myelogenous leukaemia after in vivo treatment with interferon-alpha (Wellferon). Cancer Immunol Immunother. 29:63–66. 1989. View Article : Google Scholar : PubMed/NCBI | |
Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F, Hjorth-Hansen H, Höglund M, Kovanen P, Laurinolli T, et al: Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 23:1398–1405. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kijima M, Gardiol N and Held W: Natural killer cell mediated missing-self recognition can protect mice from primary chronic myeloid leukemia in vivo. PLoS One. 6:e276392011. View Article : Google Scholar : PubMed/NCBI | |
Zhao XY, Chang YJ, Xu LP, Zhang XH, Liu KY, Li D and Huang XJ: HLA and KIR genotyping correlates with relapse after T-cell-replete haploidentical transplantation in chronic myeloid leukaemia patients. Br J Cancer. 111:1080–1088. 2014. View Article : Google Scholar : PubMed/NCBI | |
Necchi A, Lanza F, Rosti G, Martino M, Farè E, Pedrazzoli P, European Society for Blood, Marrow Transplantation and Solid Tumors Working Party; (EBMT-STWP) the Italian Germ Cell Cancer Group (IGG), : High-dose chemotherapy for germ cell tumors: Do we have a model? Expert Opin Biol Ther. 15:33–44. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zahid U, Akbar F, Amaraneni A, Husnain M, Chan O, Riaz IB, McBride A, Iftikhar A and Anwer F: A review of autologous stem cell transplantation in lymphoma. Curr Hematol Malig Rep. 12:217–226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH, et al: Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 436:709–713. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sivori S, Carlomagno S, Falco M, Romeo E, Moretta L and Moretta A: Natural killer cells expressing the KIR2DS1-activating receptor efficiently kill T-cell blasts and dendritic cells: Implications in haploidentical HSCT. Blood. 117:4284–4292. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gabriel IH, Sergeant R, Szydlo R, Apperley JF, DeLavallade H, Alsuliman A, Khoder A, Marin D, Kanfer E, Cooper N, et al: Interaction between KIR3DS1 and HLA-Bw4 predicts for progression-free survival after autologous stem cell transplantation in patients with multiple myeloma. Blood. 116:2033–2039. 2010. View Article : Google Scholar : PubMed/NCBI | |
Middleton D, Diler AS, Meenagh A, Sleator C and Gourraud PA: Killer immunoglobulin-like receptors (KIR2DL2 and/or KIR2DS2) in presence of their ligand (HLA-C1 group) protect against chronic myeloid leukaemia. Tissue Antigens. 73:553–560. 2009. View Article : Google Scholar : PubMed/NCBI | |
Marin D, Gabriel IH, Ahmad S, Foroni L, de Lavallade H, Clark R, O'Brien S, Sergeant R, Hedgley C, Milojkovic D, et al: KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib. Leukemia. 26:296–302. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kreutzman A, Jaatinen T, Greco D, Vakkila E, Richter J, Ekblom M, Hjorth-Hansen H, Stenke L, Melo T, Paquette R, et al: Killer-cell immunoglobulin-like receptor gene profile predicts good molecular response to dasatinib therapy in chronic myeloid leukemia. Exp Hematol. 40:906–913. 2012. View Article : Google Scholar : PubMed/NCBI | |
La Nasa G, Caocci G, Littera R, Atzeni S, Vacca A, Mulas O, Langiu M, Greco M, Orrù S, Orrù N, et al: Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol. 41:424–431. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao XY, Chang YJ and Huang XJ: Differential expression levels of killer immunoglobin-like receptor genotype in patients with hematological malignancies between high-risk and standard-risk groups. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 16:746–749. 2008.(In Chinese). PubMed/NCBI |