1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Willmott LJ and Fruehauf JP: Targeted
therapy in ovarian cancer. J Oncol. 2010:7404722010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gadducci A, Sartori E, Maggino T, Zola P,
Landoni F, Fanucchi A, Palai N, Alessi C, Ferrero AM, Cosio S, et
al: Analysis of failures after negative second-look in patients
with advanced ovarian cancer: An italian multicenter study. Gynecol
Oncol. 68:150–155. 1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kleppe M, Wang T, Van Gorp T, Slangen BF,
Kruse AJ and Kruitwagen RF: Lymph node metastasis in stages I and
II ovarian cancer: A review. Gynecol Oncol. 123:610–614. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Takai M, Terai Y, Kawaguchi H, Ashihara K,
Fujiwara S, Tanaka T, Tsunetoh S, Tanaka Y, Sasaki H, Kanemura M,
et al: The EMT (epithelial-mesenchymal-transition)-related protein
expression indicates the metastatic status and prognosis in
patients with ovarian cancer. J Ovarian Res. 7:762014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bagnato A and Rosano L:
Epithelial-mesenchymal transition in ovarian cancer progression: A
crucial role for the endothelin axis. Cells Tissues Organs.
185:85–94. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xiao B, Lin D and Zhang X, Zhang M and
Zhang X: TTF1, in the form of nanoparticles, inhibits angiogenesis,
cell migration and cell invasion in vitro and in vivo in human
hepatoma through STAT3 regulation. Molecules. 21:E15072016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
de Fátima A, Terra BS, da Silva CM, da
Silva DL, Araujo DP, da Silva Neto L and Nascimento de Aquino RA:
From nature to market: Examples of natural products that became
drugs. Recent Pat Biotechnol. 8:76–88. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tsubaki M, Takeda T, Ogawa N, Sakamoto K,
Shimaoka H, Fujita A, Itoh T, Imano M, Ishizaka T, Satou T, et al:
Overexpression of survivin via activation of ERK1/2, Akt, and NF-κB
plays a central role in vincristine resistance in multiple myeloma
cells. Leuk Res. 39:445–452. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Amirkia V and Heinrich M: Alkaloids as
drug leads-a predictive structural and biodiversity-based analysis.
Phytochem Lett. 10:xlviii–liii. 2014. View Article : Google Scholar
|
12
|
Khan H: Alkaloids: Potential therapeutic
modality in the management of asthma. J Ayurvedic Herb Med.
1:32015.
|
13
|
Khattak S and Khan H: Anti-cancer
potential of phyto-alkaloids: A prospective review. Curr Cancer
Ther Rev. 12:66–75. 2016. View Article : Google Scholar
|
14
|
Marya and Khan H: Anti-inflammatory
potential of alkaloids as a promising therapeutic modality. Lett
Drug Des Discov. 14:240–249. 2017. View Article : Google Scholar
|
15
|
Rehman S and Khan H: Advances in
antioxidant potential of natural alkaloids. Curr Bio Comp.
13:101–108. 2017. View Article : Google Scholar
|
16
|
Nyirimigabo E, Xu Y, Li Y, Wang Y,
Agyemang K and Zhang Y: A review on phytochemistry, pharmacology
and toxicology studies of aconitum. J Pharm Pharmacol. 67:1–19.
2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ameri A: Effects of the aconitum alkaloid
songorine on synaptic transmission and paired-pulse facilitation of
CA1 pyramidal cells in rat hippocampal slices. Br J Pharmacol.
125:461–468. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Okamoto T, Natsume M, Iitaka Y, Yoshino A
and Amiya T: The structure of lucidusculine and the absolute
configuration of songorine. Chem Pharm Bull. 13:1270–1272. 1965.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Khan H, Nabavi SM, Sureda A, Mehterov N,
Gulei D, Berindan-Neagoe I, Taniguchi H and Atanasov AG:
Therapeutic potential of songorine, a diterpenoid alkaloid of the
genus aconitum. Eur J Med Chem. 153:29–33. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sun JR, Qiu ZJ, Wang DH, Zhang B and Yuan
JF: Anti-tumor activity of 3-acetylaconitine and songorine from
Aconitum szechenyianum gay. Fine Chemicals. 35:1163–1169.
2018.
|
21
|
Nesterova YV, Povet'eva TN, Suslov NI,
Shults EE, Ziuz'kov GN, Aksinenko SG, Afanas'eva OG, Krapivin AV
and Kharina TG: Anxiolytic activity of diterpene alkaloid
songorine. Bull Exp Biol Med. 159:620–622. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cho KR and Shih IeM: Ovarian cancer. Annu
Rev Pathol. 4:287–313. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Grassi ML, Palma CS, Thomé CH, Lanfredi
GP, Poersch A and Faça VM: Proteomic analysis of ovarian cancer
cells during epithelial-mesenchymal transition (EMT) induced by
epidermal growth factor (EGF) reveals mechanisms of cell cycle
control. J Proteomics. 151:2–11. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee JM, Dedhar S, Kalluri R and Thompson
EW: The epithelial-mesenchymal transition: New insights in
signaling, development, and disease. J Cell Biol. 172:973–981.
2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bernaudo S, Salem M, Qi X, Zhou W, Zhang
C, Yang W, Rosman D, Deng Z, Ye G, Yang BB, et al: Cyclin g2
inhibits epithelial-to-mesenchymal transition by disrupting
Wnt/β-catenin signalling. Oncogene. 35:48282016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Gelfand R, Vernet D, Bruhn K, Vadgama J
and Gonzalez-Cadavid NF: Long-term exposure of MCF-12A normal human
breast epithelial cells to ethanol induces epithelial mesenchymal
transition and oncogenic features. Int J Oncol. 48:2399–2414. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Powell CD, Paullin TR, Aoisa C, Menzie CJ,
Ubaldini A and Westerheide SD: The heat shock transcription factor
HSF1 induces ovarian cancer epithelial-mesenchymal transition in a
3D spheroid growth model. PLoS One. 11:e01683892016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bian Y, Chang X, Liao Y, Wang J, Li Y,
Wang K and Wan X: Promotion of epithelial-mesenchymal transition by
Frizzled2 is involved in the metastasis of endometrial cancer.
Oncol Rep. 36:803–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Garg M: Epithelial, mesenchymal and hybrid
epithelial/mesenchymal phenotypes and their clinical relevance in
cancer metastasis. Expert Rev Mol Med. 19:e32017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Huang LL, Wang Z, Cao CJ, Ke ZF, Wang F,
Wang R, Luo CQ, Lu X and Wang LT: AEG-1 associates with metastasis
in papillary thyroid cancer through upregulation of MMP2/9. Int J
Oncol. 51:812–822. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cheng TC, Din ZH, Su JH, Wu YJ and Liu CI:
Sinulariolide suppresses cell migration and invasion by inhibiting
matrix metalloproteinase-2/-9 and urokinase through the
PI3K/AKT/mTOR signaling pathway in human bladder cancer cells. Mar
Drugs. 15:E2382017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pei S, Yang X, Wang H, Zhang H, Zhou B,
Zhang D and Lin D: Plantamajoside, a potential anti-tumor herbal
medicine inhibits breast cancer growth and pulmonary metastasis by
decreasing the activity of matrix metalloproteinase-9 and −2. BMC
Cancer. 15:9652015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Serman L, Nikuseva Martic T, Serman A and
Vranic S: Epigenetic alterations of the Wnt signaling pathway in
cancer: A mini review. Bosn J Basic Med Sci. 14:191–194. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma Y, Zhu B, Liu X, Yu H, Yong L, Liu X,
Shao J and Liu Z: Inhibition of oleandrin on the proliferation show
and invasion of osteosarcoma cells in vitro by suppressing
Wnt/β-catenin signaling pathway. J Exp Clin Cancer Res. 34:1152015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Luu HH, Zhang R, Haydon RC, Rayburn E,
Kang Q, Si W, Park JK, Wang H, Peng Y, Jiang W and He TC:
Wnt/beta-catenin signaling pathway as a novel cancer drug target.
Curr Cancer Drug Targets. 4:653–671. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gilles C, Polette M, Mestdagt M,
Nawrocki-Raby B, Ruggeri P, Birembaut P and Foidart JM:
Transactivation of vimentin by beta-catenin in human breast cancer
cells. Cancer Res. 63:2658–2664. 2003.PubMed/NCBI
|
38
|
Wu B, Crampton SP and Hughes CC: Wnt
signaling induces matrix metalloproteinase expression and regulates
T cell transmigration. Immunity. 26:227–239. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Doughan AK and Dikalov SI: Mitochondrial
redox cycling of mitoquinone leads to superoxide production and
cellular apoptosis. Antioxid Redox Signal. 9:1825–1836. 2007.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Li Y, Ma H, Lu Y, Tan BJ, Xu L, Lawal TO,
Mahady GB and Liu D: Menoprogen, a TCM herbal formula for
menopause, increases endogenous E2 in an aged rat model of
menopause by reducing ovarian granulosa cell apoptosis. Biomed Res
Int. 2016:25746372016.PubMed/NCBI
|
41
|
Day TW, Huang S and Safa AR: c-FLIP
knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and
caspase-9-dependent apoptosis in breast cancer cells. Biochem
Pharmacol. 76:1694–1704. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bratton SB and Salvesen GS: Regulation of
the Apaf-1-caspase-9 apoptosome. J Cell Sci. 123:3209–3214. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Burlacu A: Regulation of apoptosis by
Bcl-2 family proteins. J Cell Mol Med. 7:249–257. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Gu A, Jie Y, Yao Q, Zhang Y and Mingyan E:
Slug is associated with tumor metastasis and angiogenesis in
ovarian cancer. Reprod Sci. 24:291–299. 2016. View Article : Google Scholar : PubMed/NCBI
|