1
|
Henderson JT, Webber EM and Sawaya GF:
U.S. preventive services task force evidence syntheses formerly
systematic evidence reviews Screening for ovarian cancer: An
updated evidence review for the U.S. preventive services task
force. Agency for Healthcare Research and Quality (US). Report No.:
17-05231-EF-1. 2018.
|
2
|
Woolas RP, Xu FJ, Jacobs IJ, Yu YH, Daly
L, Berchuck A, Soper JT, Clarke-Pearson DL, Oram DH and Bast RC Jr:
Elevation of multiple serum markers in patients with stage I
ovarian cancer. J Natl Cancer Inst. 85:1748–1751. 1993. View Article : Google Scholar : PubMed/NCBI
|
3
|
Smith RA, Manassaram-Baptiste D, Brooks D,
Doroshenk M, Fedewa S, Saslow D, Brawley OW and Wender R: Cancer
screening in the United States, 2015: A review of current American
cancer society guidelines and current issues in cancer screening.
CA Cancer J Clin. 65:30–54. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rothbart SB and Strahl BD: Interpreting
the language of histone and DNA modifications. Biochim Biophys
Acta. 1839:627–643. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vinci MC, Polvani G and Pesce M:
Epigenetic programming and risk: The birthplace of cardiovascular
disease? Stem Cell Rev. 9:241–253. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Perlin E and Moquin RB: Serum DNA levels
in patients with malignant disease. Am J Clin Pathol. 58:601–602.
1972. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ibanez de Caceres I, Battagli C, Esteller
M, Herman JG, Dulaimi E, Edelson MI, Bergman C, Ehya H, Eisenberg
BL and Cairns P: Tumor cell-specific BRCA1 and
RASSF1A hypermethylation in serum, plasma, and peritoneal
fluid from ovarian cancer patients. Cancer Res. 64:6476–6481. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Gurard-Levin ZA and Almouzni G: Histone
modifications and a choice of variant: A language that helps the
genome express itself. F1000Prime Rep. 6:762014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hake SB, Xiao A and Allis CD: Linking the
epigenetic ‘language’ of covalent histone modifications to cancer.
Br J Cancer. 90:761–769. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Strahl BD and Allis CD: The language of
covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gillis CN: Panax ginseng pharmacology: A
nitric oxide link? Biochem Pharmacol. 54:1–8. 1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liao B, Newmark H and Zhou R:
Neuroprotective effects of ginseng total saponin and ginsenosides
Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neurol.
173:224–234. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xu TM, Xin Y, Cui MH, Jiang X and Gu LP:
Inhibitory effect of ginsenoside Rg3 combined with cyclophosphamide
on growth and angiogenesis of ovarian cancer. Chin Med J.
120:584–588. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang JH, Nao JF, Zhang M and He P:
20(s)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer
HO-8910 cells through PI3K/Akt and XIAP pathways. Tumour Biol.
35:11985–11994. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou
H, Ding L and Li X: Ginsenoside 20(S)-Rg3 targets HIF-1alpha to
block hypoxia-induced epithelial-mesenchymal transition in ovarian
cancer cells. PLoS One. 9:e1038872014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu T, Zhao L, Hou H, Ding L, Chen W and
Li X: Ginsenoside 20(S)-Rg3 suppresses ovarian cancer migration via
hypoxia-inducible factor 1 alpha and nuclear factor-kappa B
signals. Tumour Biol. 39:10104283176922252017.PubMed/NCBI
|
17
|
Xu TM, Cui MH, Xin Y, Gu LP, Jiang X, Su
MM, Wang DD and Wang WJ: Inhibitory effect of ginsenoside Rg3 on
ovarian cancer metastasis. Chin Med J. 121:1394–1397. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zheng X, Chen W, Hou H Li J, Li H, Sun X,
Zhao L and Li X: Ginsenoside 20(S)-Rg3 induced autophagy to inhibit
migration and invasion of ovarian cancer. Biomed Pharmacother.
85:620–626. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Powell CB, Kenley E, Chen LM, Crawford B,
McLennan J, Zaloudek C, Komaromy M, Beattie M and Ziegler J:
Risk-reducing salpingo-oophorectomy in BRCA mutation
carriers: Role of serial sectioning in the detection of occult
malignancy. J Clin Oncol. 23:127–132. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lee Y, Miron A, Drapkin R, Nucci MR,
Medeiros F, Saleemuddin A, Garber J, Birch C, Mou H, Gordon RW, et
al: A candidate precursor to serous carcinoma that originates in
the distal fallopian tube. J Pathol. 211:26–35. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sallum LF, Andrade L, Ramalho S, Ferracini
AC, de Andrade Natal R, Brito ABC, Sarian LO and Derchain S: WT1,
p53 and p16 expression in the diagnosis of low- and high-grade
serous ovarian carcinomas and their relation to prognosis.
Oncotarget. 9:15818–15827. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Heckl M, Schmoeckel E, Hertlein L,
Rottmann M, Jeschke U and Mayr D: The ARID1A, p53 and β-Catenin
statuses are strong prognosticators in clear cell and endometrioid
carcinoma of the ovary and the endometrium. PLoS One.
13:e01928812018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Marinas MC, Mogos DG, Simionescu CE,
Stepan A and Tanase F: The study of p53 and p16 immunoexpression in
serous borderline and malignant ovarian tumors. Rom J Morphol
Embryol. 53:1021–1025. 2012.PubMed/NCBI
|
24
|
Hu G, Li P, Li Y, Wang T, Gao X, Zhang W
and Jia G: Methylation levels of P16 and TP53 that are involved in
DNA strand breakage of 16HBE cells treated by hexavalent chromium.
Toxicol Lett. 249:15–21. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Geraldes C, Goncalves AC, Cortesao E,
Pereira MI, Roque A, Paiva A, Ribeiro L, Nascimento-Costa JM and
Sarmento-Ribeiro AB: Aberrant p15, p16, p53, and DAPK gene
methylation in myelomagenesis: Clinical and prognostic
implications. Clin Lymphoma, Myeloma Leuk. 16:713–720.e712. 2016.
View Article : Google Scholar
|
26
|
Morak M, Ibisler A, Keller G, Jessen E,
Laner A, Gonzales-Fassrainer D, Locher M, Massdorf T, Nissen AM,
Benet-Pagès A and Holinski-Feder E: Comprehensive analysis of the
MLH1 promoter region in 480 patients with colorectal cancer and
1150 controls reveals new variants including one with a heritable
constitutional MLH1 epimutation. J Med Genet. 55:240–248. 2018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Li J, Ye D, Wang L, Peng Y, Li Q, Deng H
and Zhou C: Role of MLH1 methylation in esophageal cancer
carcinogenesis and its clinical significance. Onco Targets Ther.
11:651–663. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nelissen EC, van Montfoort AP, Dumoulin JC
and Evers JL: Epigenetics and the placenta. Hum Reprod Update.
17:397–417. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Vancurova I, Gatla HR and Vancura A:
HDAC/IKK inhibition therapies in solid tumors. Oncotarget.
8:34030–34031. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Booth L, Roberts JL, Poklepovic A,
Kirkwood J and Dent P: HDAC inhibitors enhance the immunotherapy
response of melanoma cells. Oncotarget. 8:83155–83170. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Yano M, Yasuda M, Sakaki M, Nagata K,
Fujino T, Arai E, Hasebe T, Miyazawa M, Miyazawa M, Ogane N, et al:
Association of histone deacetylase expression with histology and
prognosis of ovarian cancer. Oncol Lett. 15:3524–3531.
2018.PubMed/NCBI
|
32
|
Gatla HR, Zou Y, Uddin MM, Singha B, Bu P,
Vancura A and Vancurova I: Histone deacetylase (HDAC) inhibition
induces ikappaB kinase (IKK)-dependent interleukin-8/CXCL8
expression in ovarian cancer cells. J Biol Chem. 292:5043–5054.
2017. View Article : Google Scholar : PubMed/NCBI
|