1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bast RC Jr, Hennessy B and Mills GB: The
biology of ovarian cancer: New opportunities for translation. Nat
Rev Cancer. 9:415–428. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kurman RJ and Shih Ie M: The origin and
pathogenesis of epithelial ovarian cancer: A proposed unifying
theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chang HL, MacLaughlin DT and Donahoe PK:
Somatic stem cells of the ovary and their relationship to human
ovarian cancers. StemBook; Cambridge MA: Harvard Stem Cell
Institute: 2008–2009
|
5
|
Szotek PP, Chang HL, Brennand K, Fujino A,
Pieretti-Vanmarcke R, Lo Celso C, Dombkowski D, Preffer F, Cohen
KS, Teixeira J, et al: Normal ovarian surface epithelial
label-retaining cells exhibit stem/progenitor cell characteristics.
Proc Natl Acad Sci USA. 105:12469–12473. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Flesken-Nikitin A, Hwang CI, Cheng CY,
Michurina TV, Enikolopov G and Nikitin AY: Ovarian surface
epithelium at the junction area contains a cancer-prone stem cell
niche. Nature. 495:241–245. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Aguilar-Gallardo C, Rutledge EC,
Martínez-Arroyo AM, Hidalgo JJ, Domingo S and Simón C: Overcoming
challenges of ovarian cancer stem cells: Novel therapeutic
approaches. Stem Cell Rev. 8:994–1010. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao J: Cancer stem cells and
chemoresistance: The smartest survives the raid. Pharmacol Ther.
160:145–158. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang S, Cui B, Lai H, Liu G, Ghia EM,
Widhopf GF II, Zhang Z, Wu CC, Chen L, Wu R, et al: Ovarian cancer
stem cells express ROR1, which can be targeted for
anti-cancer-stem-cell therapy. Proc Natl Acad Sci USA.
111:17266–17271. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang Y, Cardenas H, Fang F, Condello S,
Taverna P, Segar M, Liu Y, Nephew KP and Matei D: Epigenetic
targeting of ovarian cancer stem cells. Cancer Res. 74:4922–4936.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chau WK, Ip CK, Mak AS, Lai HC and Wong
AS: c-Kit mediates chemoresistance and tumor-initiating capacity of
ovarian cancer cells through activation of
Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene.
32:2767–2781. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Abubaker K, Latifi A, Luwor R, Nazaretian
S, Zhu H, Quinn MA, Thompson EW, Findlay JK and Ahmed N: Short-term
single treatment of chemotherapy results in the enrichment of
ovarian cancer stem cell-like cells leading to an increased tumor
burden. Mol Cancer. 12:242013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Feldman D, Krishnan AV, Swami S,
Giovannucci E and Feldman BJ: The role of vitamin D in reducing
cancer risk and progression. Nat Rev Cancer. 14:342–357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Pervin S, Hewison M, Braga M, Tran L, Chun
R, Karam A, Chaudhuri G, Norris K and Singh R: Down-regulation of
vitamin D receptor in mammospheres: Implications for vitamin D
resistance in breast cancer and potential for combination therapy.
PLoS One. 8:e532872013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pereira F, Larriba MJ and Muñoz A: Vitamin
D and colon cancer. Endocr Relat Cancer. 19:R51–R71. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Larriba MJ and Muñoz A: SNAIL vs. vitamin
D receptor expression in colon cancer: Therapeutics implications.
Br J Cancer. 92:985–989. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hou YF, Gao SH, Wang P, Zhang HM, Liu LZ,
Ye MX, Zhou GM, Zhang ZL and Li BY:
1α,25(OH)2D3 suppresses the migration of
ovarian cancer SKOV-3 cells through the inhibition of
epithelial-mesenchymal transition. Int J Mol Sci. 17:12852016.
View Article : Google Scholar :
|
18
|
Maund SL, Barclay WW, Hover LD, Axanova
LS, Sui G, Hipp JD, Fleet JC, Thorburn A and Cramer SD:
Interleukin-1α mediates the antiproliferative effects of
1,25-dihydroxyvitamin D3 in prostate progenitor/stem
cells. Cancer Res. 71:5276–5286. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Choudhury S, Almendro V, Merino VF, Wu Z,
Maruyama R, Su Y, Martins FC, Fackler MJ, Bessarabova M, Kowalczyk
A, et al: Molecular profiling of human mammary gland links breast
cancer risk to a p27+ cell population with progenitor
characteristics. Cell Stem Cell. 13:117–130. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
So JY, Lee HJ, Smolarek AK, Paul S, Wang
CX, Maehr H, Uskokovic M, Zheng X, Conney AH, Cai L, et al: A novel
Gemini vitamin D analog represses the expression of a stem cell
marker CD44 in breast cancer. Mol Pharmacol. 79:360–367. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
So JY, Wahler J, Das Gupta S, Salerno DM,
Maehr H, Uskokovic M and Suh N: HES1-mediated inhibition of Notch1
signaling by a Gemini vitamin D analog leads to decreased
CD44+/CD24−/low tumor-initiating
subpopulation in basal-like breast cancer. J Steroid Biochem Mol
Biol. 148:111–121. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yasuda K, Torigoe T, Morita R, Kuroda T,
Takahashi A, Matsuzaki J, Kochin V, Asanuma H, Hasegawa T, Saito T,
et al: Ovarian cancer stem cells are enriched in side population
and aldehyde dehydrogenase bright overlapping population. PLoS One.
8:e681872013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Szotek PP, Pieretti-Vanmarcke R, Masiakos
PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F,
Maclaughlin DT and Donahoe PK: Ovarian cancer side population
defines cells with stem cell-like characteristics and Mullerian
Inhibiting Substance responsiveness. Proc Natl Acad Sci USA.
103:11154–11159. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hu L, McArthur C and Jaffe RB: Ovarian
cancer stem-like side-population cells are tumourigenic and
chemoresistant. Br J Cancer. 102:1276–1283. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rizzo S, Hersey JM, Mellor P, Dai W,
Santos-Silva A, Liber D, Luk L, Titley I, Carden CP, Box G, et al:
Ovarian cancer stem cell-like side populations are enriched
following chemotherapy and overexpress EZH2. Mol Cancer
Ther. 10:325–335. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sales-Pardo I, Avendaño A, Martinez-Muñoz
V, García-Escarp M, Celis R, Whittle P, Barquinero J, Domingo JC,
Marin P and Petriz J: Flow cytometry of the side population: Tips
& tricks. Cell Oncol. 28:37–53. 2006.PubMed/NCBI
|
27
|
Roby KF, Taylor CC, Sweetwood JP, Cheng Y,
Pace JL, Tawfik O, Persons DL, Smith PG and Terranova PF:
Development of a syngeneic mouse model for events related to
ovarian cancer. Carcinogenesis. 21:585–591. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
de la Mare JA, Jurgens T and Edkins AL:
Extracellular Hsp90 and TGFβ regulate adhesion, migration and
anchorage independent growth in a paired colon cancer cell line
model. BMC cancer. 17:2022017. View Article : Google Scholar : PubMed/NCBI
|
30
|
McCloskey CW, Goldberg RL, Carter LE,
Gamwell LF, Al-Hujaily EM, Collins O, Macdonald EA, Garson K,
Daneshmand M, Carmona E, et al: A new spontaneously transformed
syngeneic model of high-grade serous ovarian cancer with a
tumor-initiating cell population. Front Oncol. 4:532014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lobo NA, Shimono Y, Qian D and Clarke MF:
The biology of cancer stem cells. Annu Rev Cell Dev Biol.
23:675–699. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gerweck LE and Wakimoto H: At the
crossroads of cancer stem cells, radiation biology, and radiation
oncology. Cancer Res. 76:994–998. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Steg AD, Bevis KS, Katre AA, Ziebarth A,
Dobbin ZC, Alvarez RD, Zhang K, Conner M and Landen CN: Stem cell
pathways contribute to clinical chemoresistance in ovarian cancer.
Clin Cancer Res. 18:869–881. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nuti SV, Mor G, Li P and Yin G: TWIST and
ovarian cancer stem cells: Implications for chemoresistance and
metastasis. Oncotarget. 5:7260–7271. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang R, Wu D, Yuan Y, Li X, Holm R, Trope
CG, Nesland JM and Suo Z: CD117 expression in fibroblasts-like
stromal cells indicates unfavorable clinical outcomes in ovarian
carcinoma patients. PLoS One. 9:e1122092014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen J, Wang J, Chen D, Yang J, Yang C,
Zhang Y, Zhang H and Dou J: Evaluation of characteristics of
CD44+CD117+ ovarian cancer stem cells in
three dimensional basement membrane extract scaffold versus two
dimensional monocultures. BMC Cell Biol. 14:72013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yanamoto S, Kawasaki G, Yamada S,
Yoshitomi I, Kawano T, Yonezawa H, Rokutanda S, Naruse T and Umeda
M: Isolation and characterization of cancer stem-like side
population cells in human oral cancer cells. Oral Oncol.
47:855–860. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ruan Z, Liu J and Kuang Y: Isolation and
characterization of side population cells from the human ovarian
cancer cell line SK-OV-3. Exp Ther Med. 10:2071–2078. 2015.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Hendrickson WK, Flavin R, Kasperzyk JL,
Fiorentino M, Fang F, Lis R, Fiore C, Penney KL, Ma J, Kantoff PW,
et al: Vitamin D receptor protein expression in tumor tissue and
prostate cancer progression. J Clin Oncol. 29:2378–2385. 2011.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Ditsch N, Toth B, Mayr D, Lenhard M,
Gallwas J, Weissenbacher T, Dannecker C, Friese K and Jeschke U:
The association between vitamin D receptor expression and prolonged
overall survival in breast cancer. J Histochem Cytochem.
60:121–129. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jiang F, Li P, Fornace AJ Jr, Nicosia SV
and Bai W: G2/M arrest by 1,25-dihydroxyvitamin
D3 in ovarian cancer cells mediated through the
induction of GADD45 via an exonic enhancer. J Biol Chem.
278:48030–48040. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jiang F, Bao J, Li P, Nicosia SV and Bai
W: Induction of ovarian cancer cell apoptosis by
1,25-dihydroxyvitamin D3 through the down-regulation of
telomerase. J Biol Chem. 279:53213–53221. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang X, Jiang F, Li P, Li C, Ma Q,
Nicosia SV and Bai W: Growth suppression of ovarian cancer
xenografts in nude mice by vitamin D analogue EB1089. Clin Cancer
Res. 11:323–328. 2005.PubMed/NCBI
|
44
|
Hiraga T, Ito S and Nakamura H: Cancer
stem-like cell marker CD44 promotes bone metastases by enhancing
tumorigenicity, cell motility, and hyaluronan production. Cancer
Res. 73:4112–4122. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liu C, Kelnar K, Liu B, Chen X,
Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et
al: The microRNA miR-34a inhibits prostate cancer stem cells and
metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Kashyap V, Rezende NC, Scotland KB,
Shaffer SM, Persson JL, Gudas LJ and Mongan NP: Regulation of stem
cell pluripotency and differentiation involves a mutual regulatory
circuit of the NANOG, OCT4, and SOX2 pluripotency transcription
factors with polycomb repressive complexes and stem cell microRNAs.
Stem Cells Dev. 18:1093–1108. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Boyer LA, Lee TI, Cole MF, Johnstone SE,
Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG,
et al: Core transcriptional regulatory circuitry in human embryonic
stem cells. Cell. 122:947–956. 2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bourguignon LY, Wong G, Earle C and Chen
L: Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes
miR-302 expression leading to self-renewal, clonal formation, and
cisplatin resistance in cancer stem cells from head and neck
squamous cell carcinoma. J Biol Chem. 287:32800–32824. 2012.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Schneider S, Steinbeisser H, Warga RM and
Hausen P: Beta-catenin translocation into nuclei demarcates the
dorsalizing centers in frog and fish embryos. Mech Dev. 57:191–198.
1996. View Article : Google Scholar : PubMed/NCBI
|
50
|
Hoffmeyer K, Raggioli A, Rudloff S, Anton
R, Hierholzer A, Del Valle I, Hein K, Vogt R and Kemler R:
Wnt/β-catenin signaling regulates telomerase in stem cells and
cancer cells. Science. 336:1549–1554. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Lee E, Madar A, David G, Garabedian MJ,
Dasgupta R and Logan SK: Inhibition of androgen receptor and
beta-catenin activity in prostate cancer. Proc Natl Acad Sci USA.
110:15710–15715. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Li S, Li S, Sun Y and Li L: The expression
of beta-catenin in different subtypes of breast cancer and its
clinical significance. Tumour Biol. 35:7693–7698. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wang H, Wang H, Makki MS, Wen J, Dai Y,
Shi Q, Liu Q, Zhou X and Wang J: Overexpression of β-catenin and
cyclinD1 predicts a poor prognosis in ovarian serous carcinomas.
Int J Clin Exp Pathol. 7:264–271. 2014.PubMed/NCBI
|
54
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
55
|
Sebio A, Kahn M and Lenz HJ: The potential
of targeting Wnt/β-catenin in colon cancer. Expert Opin Ther
Targets. 18:611–615. 2014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Larriba MJ, Ordóñez-Moran P, Chicote I,
Martín-Fernández G, Puig I, Muñoz A and Pálmer HG: Vitamin D
receptor deficiency enhances Wnt/beta-catenin signaling and tumor
burden in colon cancer. PLoS One. 6:e235242011. View Article : Google Scholar : PubMed/NCBI
|
57
|
Jiang YJ, Teichert AE, Fong F, Oda Y and
Bikle DD: 1α,25(OH)2-dihydroxyvitamin D3/VDR protects
the skin from UVB-induced tumor formation by interacting with the
beta-catenin pathway. J Steroid Biochem Mol Biol. 136:229–232.
2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Pálmer HG, González-Sancho JM, Espada J,
Berciano MT, Puig I, Baulida J, Quintanilla M, Cano A, de Herreros
AG, Lafarga M and Muñoz A: Vitamin D3 promotes the
differentiation of colon carcinoma cells by the induction of
E-cadherin and the inhibition of beta-catenin signaling. J Cell
Biol. 154:369–387. 2001. View Article : Google Scholar : PubMed/NCBI
|