Open Access

Effects of gossypol on apoptosis‑related gene expression in racially distinct triple‑negative breast cancer cells

  • Authors:
    • Samia S. Messeha
    • Najla O. Zarmouh
    • Patricia Mendonca
    • Hayfaa Alwagdani
    • Carolyn Cotton
    • Karam F.A. Soliman
  • View Affiliations

  • Published online on: May 31, 2019     https://doi.org/10.3892/or.2019.7179
  • Pages: 467-478
  • Copyright: © Messeha et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Apoptosis is a gene‑directed mechanism that regulates cell proliferation and maintains homeostasis. Moreover, an aberrant apoptotic process can lead to several pathological conditions, such as tumorigenesis and cancer metastasis. In the present study, the apoptotic effect of the natural polyphenol compound gossypol GOSS) was investigated in triple‑negative breast cancer TNBC) cells. The effect of GOSS was evaluated in two cell lines representative of a Caucasian‑American and African‑American origin, MDA‑MB‑231 MM‑231) and MDA‑MB‑468 MM‑468), respectively. A similar response to both cytotoxicity and proliferation was observed in the two cell lines. However, MM‑468 cells were 2‑fold more sensitive to the apoptotic effect of the compound, which was accompanied by a longer delay in colony formation. Furthermore, GOSS was found to alter the mRNA expression of many apoptosis‑related genes. The compound significantly upregulated growth arrest and DNA damage‑inducible 45 alpha protein (GADD45A), tumor necrosis factor receptor superfamily 9 (TNFRSF9) and BCL2 interacting protein 3 BNIP3) in MM‑231 cells. Similarly, GADD45A and BNIP3 were upregulated in MM‑468 cells. A significant finding in this study is the profound 159‑fold increase in TNF gene expression that was observed in MM‑468 cells. Moreover, the apoptosis‑suppressor gene baculoviral IAP repeat containing 5 BIRC5) was significantly repressed (by more than 90%) in both cell lines, as well as death‑associated protein kinase 1 (DAPK1) in MM‑231 cells and tumor protein 73 (TP73) in MM‑468 cells. In conclusion, the data obtained in this study provide a molecular understanding of the GOSS‑induced apoptosis effect and suggest the importance of this polyphenol compound targeted towards TNBC treatment, particularly in African‑American women.
View Figures
View References

Related Articles

Journal Cover

August-2019
Volume 42 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Messeha SS, Zarmouh NO, Mendonca P, Alwagdani H, Cotton C and Soliman KF: Effects of gossypol on apoptosis‑related gene expression in racially distinct triple‑negative breast cancer cells. Oncol Rep 42: 467-478, 2019.
APA
Messeha, S.S., Zarmouh, N.O., Mendonca, P., Alwagdani, H., Cotton, C., & Soliman, K.F. (2019). Effects of gossypol on apoptosis‑related gene expression in racially distinct triple‑negative breast cancer cells. Oncology Reports, 42, 467-478. https://doi.org/10.3892/or.2019.7179
MLA
Messeha, S. S., Zarmouh, N. O., Mendonca, P., Alwagdani, H., Cotton, C., Soliman, K. F."Effects of gossypol on apoptosis‑related gene expression in racially distinct triple‑negative breast cancer cells". Oncology Reports 42.2 (2019): 467-478.
Chicago
Messeha, S. S., Zarmouh, N. O., Mendonca, P., Alwagdani, H., Cotton, C., Soliman, K. F."Effects of gossypol on apoptosis‑related gene expression in racially distinct triple‑negative breast cancer cells". Oncology Reports 42, no. 2 (2019): 467-478. https://doi.org/10.3892/or.2019.7179