Effects of gossypol on apoptosis‑related gene expression in racially distinct triple‑negative breast cancer cells
- Authors:
- Samia S. Messeha
- Najla O. Zarmouh
- Patricia Mendonca
- Hayfaa Alwagdani
- Carolyn Cotton
- Karam F.A. Soliman
-
Affiliations: College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida 32307, USA - Published online on: May 31, 2019 https://doi.org/10.3892/or.2019.7179
- Pages: 467-478
-
Copyright: © Messeha et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Al-Romaih K, Sadikovic B, Yoshimoto M, Wang Y, Zielenska M and Squire JA: Decitabine-induced demethylation of 5′ CpG island in GADD45A leads to apoptosis in osteosarcoma cells. Neoplasia. 10:471–480. 2008. View Article : Google Scholar : PubMed/NCBI | |
Albain KS, Unger JM, Crowley JJ, Coltman CA Jr and Hershman DL: Racial disparities in cancer survival among randomized clinical trials patients of the Southwest oncology group. J Natl Cancer Inst. 101:984–992. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alderson MR, Smith CA, Tough TW, Davis-Smith T, Armitage RJ, Falk B, Roux E, Baker E, Sutherland GR and Din WS: Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol. 24:2219–2227. 1994. View Article : Google Scholar : PubMed/NCBI | |
Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S and Peter ME: Apoptosis signaling by death receptors. Eur J Biochem. 254:439–459. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mishra AP, Salehi B, Sharifi-Rad M, Pezzani R, Kobarfard F, Sharifi-Rad J and Nigam M: Programmed cell death, from a cancer perspective: An overview. Mol Diagn Ther. 22:281–295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wali JA, Masters SL and Thomas HE: Linking metabolic abnormalities to apoptotic pathways in Beta cells in type 2 diabetes. Cells. 2:266–283. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B and Reed JC: Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 9:1799–1805. 1994.PubMed/NCBI | |
Kang MH and Reynolds CP: Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 15:1126–1132. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fulda S: Targeting inhibitor of apoptosis proteins (IAPs) for cancer therapy. Anticancer Agents Med Chem. 8:533–539. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mannhold R, Fulda S and Carosati E: IAP antagonists: Promising candidates for cancer therapy. Drug Discov Today. 15:210–219. 2010. View Article : Google Scholar : PubMed/NCBI | |
DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA and Jemal A: Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA Cancer J Clin. 66:31–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Anders CK and Carey LA: Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 9 (Suppl 2):S73–S81. 2009. View Article : Google Scholar : PubMed/NCBI | |
Beaumont T and Leadbeater M: Treatment and care of patients with metastatic breast cancer. Nurs Stand. 25:49–56. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fernández Y, Cueva J, Palomo AG, Ramos M, de Juan A, Calvo L, García-Mata J, García-Teijido P, Peláez I and García-Estévez L: Novel therapeutic approaches to the treatment of metastatic breast cancer. Cancer Treat Rev. 36:33–42. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Kumar IS, Brown S, Kannappan V, Tawari PE, Tang JZ, Jiang W, Armesilla AL, Darling JL and Wang W: Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer. 109:1876–1885. 2013. View Article : Google Scholar : PubMed/NCBI | |
Craig DW, O'Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, Wong S, Dinh J, Christoforides A, Blum JL, et al: Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther. 12:104–116. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Sethumadhavan K and Bland JM: Isolation of cottonseed extracts that affect human cancer cell growth. Sci Rep. 8:104582018. View Article : Google Scholar : PubMed/NCBI | |
He Z, Zhang H and Olk DC: Chemical composition of defatted cottonseed and soy meal products. PLoS One. 10:e01299332015. View Article : Google Scholar : PubMed/NCBI | |
Sharifi-Rad M, Fokou PVT, Sharopov F, Martorell M, Ademiluyi AO, Rajkovic J, Salehi B, Martins N, Iriti M and Sharifi-Rad J: Antiulcer agents: From plant extracts to phytochemicals in healing promotion. Molecules. 23(pii): E17512018. View Article : Google Scholar : PubMed/NCBI | |
Lin TS, Schinazi RF, Zhu J, Birks E, Carbone R, Si Y, Wu K, Huang L and Prusoff WH: Anti-HIV-1 activity and cellular pharmacology of various analogs of gossypol. Biochem Pharmacol. 46:251–255. 1993. View Article : Google Scholar : PubMed/NCBI | |
Janero DR and Burghardt B: Protection of rat myocardial phospholipid against peroxidative injury through superoxide-(xanthine oxidase)-dependent, iron-promoted fenton chemistry by the male contraceptive gossypol. Biochem Pharmacol. 37:3335–3342. 1988. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Kulp SK, Sugimoto Y, Jiang J, Chang HL, Dowd MK, Wan P and Lin YC: The (−)-enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res. 22:33–38. 2002.PubMed/NCBI | |
Moon DO, Kim MO, Lee JD and Kim GY: Gossypol suppresses NF-kappaB activity and NF-kappaB-related gene expression in human leukemia U937 cells. Cancer Lett. 264:192–200. 2008. View Article : Google Scholar : PubMed/NCBI | |
Voss V, Senft C, Lang V, Ronellenfitsch MW, Steinbach JP, Seifert V and Kögel D: The pan-Bcl-2 inhibitor (−)-gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res. 8:1002–1016. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Liu H, Guo R, Ling Y, Wu X, Li B, Roller PP, Wang S and Yang D: Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochem Pharmacol. 66:93–103. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pang X, Wu Y, Wu Y, Lu B, Chen J, Wang J, Yi Z, Qu W and Liu M: (−)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis. Mol Cancer Ther. 10:795–805. 2011. View Article : Google Scholar : PubMed/NCBI | |
Flack MR, Pyle RG, Mullen NM, Lorenzo B, Wu YW, Knazek RA, Nisula BC and Reidenberg MM: Oral gossypol in the treatment of metastatic adrenal cancer. J Clin Endocrinol Metab. 76:1019–1024. 1993. View Article : Google Scholar : PubMed/NCBI | |
Moon DO, Choi YH, Moon SK, Kim WJ and Kim GY: Gossypol decreases tumor necrosis factor-α-induced intercellular adhesion molecule-1 expression via suppression of NF-κB activity. Food Chem Toxicol. 49:999–1005. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gilbert NE, O'Reilly JE, Chang CJ, Lin YC and Brueggemeier RW: Antiproliferative activity of gossypol and gossypolone on human breast cancer cells. Life Sci. 57:61–67. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hu YF, Chang CJ, Brueggemeier RW and Lin YC: Gossypol inhibits basal and estrogen-stimulated DNA synthesis in human breast carcinoma cells. Life Sci. 53:Pl433–Pl438. 1993. View Article : Google Scholar : PubMed/NCBI | |
Ye W, Chang HL, Wang LS, Huang YW, Shu S, Sugimoto Y, Dowd MK, Wan PJ and Lin YC: Induction of apoptosis by (−)-gossypol-enriched cottonseed oil in human breast cancer cells. Int J Mol Med. 26:113–119. 2010.PubMed/NCBI | |
Lin J, Wu Y, Yang D and Zhao Y: Induction of apoptosis and antitumor effects of a small molecule inhibitor of Bcl-2 and Bcl-xl, gossypol acetate, in multiple myeloma in vitro and in vivo. Oncol Rep. 30:731–738. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sadahira K, Sagawa M, Nakazato T, Uchida H, Ikeda Y, Okamoto S, Nakajima H and Kizaki M: Gossypol induces apoptosis in multiple myeloma cells by inhibition of interleukin-6 signaling and Bcl-2/Mcl-1 pathway. Int J Oncol. 45:2278–2286. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baoleri X, Dong C, Zhou Y, Zhang Z, Lu X, Xie P and Li Y: Combination of L-gossypol and low-concentration doxorubicin induces apoptosis in human synovial sarcoma cells. Mol Med Rep. 12:5924–5932. 2015. View Article : Google Scholar : PubMed/NCBI | |
Benvenuto M, Mattera R, Masuelli L, Taffera G, Andracchio O, Tresoldi I, Lido P, Giganti MG, Godos J, Modesti A and Bei R: (±)-Gossypol induces apoptosis and autophagy in head and neck carcinoma cell lines and inhibits the growth of transplanted salivary gland cancer cells in BALB/c mice. Int J Food Sci Nutr. 68:298–312. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao GX, Xu LH, Pan H, Lin QR, Huang MY, Cai JY, Ouyang DY and He XH: The BH3-mimetic gossypol and noncytotoxic doses of valproic acid induce apoptosis by suppressing cyclin-A2/Akt/FOXO3a signaling. Oncotarget. 6:38952–38966. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Liu H, Tian Z, Griffith BN, Ji M and Li QQ: Gossypol induces apoptosis in human PC-3 prostate cancer cells by modulating caspase-dependent and caspase-independent cell death pathways. Life Sci. 80:767–774. 2007. View Article : Google Scholar : PubMed/NCBI | |
Volate SR, Kawasaki BT, Hurt EM, Milner JA, Kim YS, White J and Farrar WL: Gossypol induces apoptosis by activating p53 in prostate cancer cells and prostate tumor-initiating cells. Mol Cancer Ther. 9:461–470. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu MD, Li LY, Li PH, You T, Wang FH, Sun WJ and Zheng ZQ: Gossypol induces cell death by activating apoptosis and autophagy in HT-29 cells. Mol Med Rep. 16:2128–2132. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Chen Y, Mu X, Lian Q, Deng H and Ge R: Phosphoproteomic analysis of gossypol-induced apoptosis in ovarian cancer cell line, HOC1a. Biomed Res Int. 2014:1234822014. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Jin L, Li X and Deng H, Chen Y, Lian Q, Ge R and Deng H: Gossypol induces apoptosis in ovarian cancer cells through oxidative stress. Mol Biosyst. 9:1489–1497. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xin J, Zhan YH, Xia LM, Zhu HW, Nie YZ, Liang JM and Tian J: ApoG2 as the most potent gossypol derivatives inhibits cell growth and induces apoptosis on gastric cancer cells. Biomed Pharmacother. 67:88–95. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cheng W, Zhao YQ, Li YM and Yang DJ: Effects of gossypol acetate on apoptosis in primary cultured cells from patients with lymphoid leukemia and its synergy with dexamethasone. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 20:229–234. 2012.(In Chinese). PubMed/NCBI | |
Balakrishnan K, Wierda WG, Keating MJ and Gandhi V: Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood. 112:1971–1980. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Wang Z, Chen L, Huang G and Hu X: Gossypol acetate induced apoptosis of pituitary tumor cells by targeting the BCL-2 via the upregulated microRNA miR-15a. Int J Clin Exp Med. 8:9079–9085. 2015.PubMed/NCBI | |
Karaca B, Atmaca H, Uzunoglu S, Karabulut B, Sanli UA and Uslu R: Enhancement of taxane-induced cytotoxicity and apoptosis by gossypol in human breast cancer cell line MCF-7. J BUON. 14:479–485. 2009.PubMed/NCBI | |
Yoshida R, Niki M, Jyotaki M, Sanematsu K, Shigemura N and Ninomiya Y: Modulation of sweet responses of taste receptor cells. Semin Cell Dev Biol. 24:226–231. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME and Collins-Burow BM: Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 14:R792012. View Article : Google Scholar : PubMed/NCBI | |
Messeha SS, Zarmouh NO, Mendonca P, Alwagdani H, Kolta MG and Soliman KFA: The inhibitory effects of plumbagin on the NF-κB pathway and CCL2 release in racially different triple-negative breast cancer cells. PLoS One. 13:e02011162018. View Article : Google Scholar : PubMed/NCBI | |
Citalingam K, Abas F, Lajis NH, Othman I and Naidu R: Anti-proliferative effect and induction of apoptosis in androgen-independent human prostate cancer cells by 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one. Molecules. 20:3406–3430. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chougule MB, Patel AR, Jackson T and Singh M: Antitumor activity of noscapine in combination with doxorubicin in triple negative breast cancer. PLoS One. 6:e177332011. View Article : Google Scholar : PubMed/NCBI | |
Plati J, Bucur O and Khosravi-Far R: Dysregulation of apoptotic signaling in cancer: Molecular mechanisms and therapeutic opportunities. J Cell Biochem. 104:1124–1149. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM and Kemmner W: Identification of early molecular markers for breast cancer. Mol Cancer. 10:152011. View Article : Google Scholar : PubMed/NCBI | |
Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, et al: Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA. 100:5974–5979. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Poznak C, Seidman AD, Reidenberg MM, Moasser MM, Sklarin N, Van Zee K, Borgen P, Gollub M, Bacotti D, Yao TJ, et al: Oral gossypol in the treatment of patients with refractory metastatic breast cancer: A phase I/II clinical trial. Breast Cancer Res Treat. 66:239–248. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wong RS: Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011. View Article : Google Scholar : PubMed/NCBI | |
Zhan Q: Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res. 569:133–143. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tront JS, Willis A, Huang Y, Hoffman B and Liebermann DA: Gadd45a levels in human breast cancer are hormone receptor dependent. J Transl Med. 11:1312013. View Article : Google Scholar : PubMed/NCBI | |
Desjardins S, Ouellette G, Labrie Y, Simard J; INHERIT BRCAs, ; Durocher F: Analysis of GADD45A sequence variations in French Canadian families with high risk of breast cancer. J Hum Genet. 53:490–498. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takekawa M and Saito H: A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 95:521–530. 1998. View Article : Google Scholar : PubMed/NCBI | |
Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD and Haber DA: Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell. 97:575–586. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yasuda M, Theodorakis P, Subramanian T and Chinnadurai G: Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. J Biol Chem. 273:12415–12421. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, Takano Y, Saito K, Furuta E, Iiizumi M, et al: Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res. 66:5934–5940. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R and Greenberg AH: BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 20:5454–5468. 2000. View Article : Google Scholar : PubMed/NCBI | |
Khan A, Aljarbou AN, Aldebasi YH, Faisal SM and Khan MA: Resveratrol suppresses the proliferation of breast cancer cells by inhibiting fatty acid synthase signaling pathway. Cancer Epidemiol. 38:765–772. 2014. View Article : Google Scholar : PubMed/NCBI | |
Silva JC, Ferreira-Strixino J, Fontana LC, Paula LM, Raniero L, Martin AA and Canevari RA: Apoptosis-associated genes related to photodynamic therapy in breast carcinomas. Lasers Med Sci. 29:1429–1436. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ruddle NH: Tumor necrosis factor (TNF-alpha) and lymphotoxin (TNF-beta). Curr Opin Immunol. 4:327–332. 1992. View Article : Google Scholar : PubMed/NCBI | |
Rath PC and Aggarwal BB: TNF-induced signaling in apoptosis. J Clin Immunol. 19:350–364. 1999. View Article : Google Scholar : PubMed/NCBI | |
Robbs BK, Lucena PI and Viola JP: The transcription factor NFAT1 induces apoptosis through cooperation with Ras/Raf/MEK/ERK pathway and upregulation of TNF-α expression. Biochim Biophys Acta. 1833:2016–2028. 2013. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F: TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 25:409–416. 2006. View Article : Google Scholar : PubMed/NCBI | |
Szlosarek PW and Balkwill FR: Tumour necrosis factor alpha: A potential target for the therapy of solid tumours. Lancet Oncol. 4:565–573. 2003. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F: Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 13:135–141. 2002. View Article : Google Scholar : PubMed/NCBI | |
Luo JL, Maeda S, Hsu LC, Yagita H and Karin M: Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell. 6:297–305. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hassan M, Watari H, AbuAlmaaty A, Ohba Y and Sakuragi N: Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014:1508452014. View Article : Google Scholar : PubMed/NCBI | |
Hahne M, Kataoka T, Schröter M, Hofmann K, Irmler M, Bodmer JL, Schneider P, Bornand T, Holler N, French LE, et al: APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med. 188:1185–1190. 1998. View Article : Google Scholar : PubMed/NCBI | |
Schwarz H, Valbracht J, Tuckwell J, von Kempis J and Lotz M: ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood. 85:1043–1052. 1995.PubMed/NCBI | |
Bellarosa D, Bressan A, Bigioni M, Parlani M, Maggi CA and Binaschi M: SAHA/Vorinostat induces the expression of the CD137 receptor/ligand system and enhances apoptosis mediated by soluble CD137 receptor in a human breast cancer cell line. Int J Oncol. 41:1486–1494. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hingorani P, Dickman P, Garcia-Filion P, White-Collins A, Kolb EA and Azorsa DO: BIRC5 expression is a poor prognostic marker in ewing sarcoma. Pediatr Blood Cancer. 60:35–40. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jha K, Shukla M and Pandey M: Survivin expression and targeting in breast cancer. Surg Oncol. 21:125–131. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, Chung CW, Jung YK and Oh BH: An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and −7. Biochemistry. 40:1117–1123. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ghaffari K, Hashemi M, Ebrahimi E and Shirkoohi R: BIRC5 genomic copy number variation in early-onset breast cancer. Iran Biomed J. 20:241–245. 2016.PubMed/NCBI | |
Mahlamäki EH, Bärlund M, Tanner M, Gorunova L, Höglund M, Karhu R and Kallioniemi A: Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes Cancer. 35:353–358. 2002. View Article : Google Scholar : PubMed/NCBI | |
Baykara O, Bakir B, Buyru N, Kaynak K and Dalay N: Amplification of chromosome 8 genes in lung cancer. J Cancer. 6:270–275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gunaldi M, Isiksacan N, Kocoglu H, Okuturlar Y, Gunaldi O, Topcu TO and Karabulut M: The value of serum survivin level in early diagnosis of cancer. J Cancer Res Ther. 14:570–573. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kato J, Kuwabara Y, Mitani M, Shinoda N, Sato A, Toyama T, Mitsui A, Nishiwaki T, Moriyama S, Kudo J and Fujii Y: Expression of survivin in esophageal cancer: Correlation with the prognosis and response to chemotherapy. Int J Cancer. 95:92–95. 2001. View Article : Google Scholar : PubMed/NCBI | |
Coumar MS, Tsai FY, Kanwar JR, Sarvagalla S and Cheung CH: Treat cancers by targeting survivin: Just a dream or future reality? Cancer Treat Rev. 39:802–811. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Ren L, Wang X, Qu C and Zhang Y: Expression of livin, survivin, and caspase-3 in prostatic cancer and their clinical significance. Int J Clin Exp Pathol. 8:14034–14039. 2015.PubMed/NCBI | |
Wu B, Yao H, Wang S and Xu R: DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-κB, and caspase-3 activation. Biochem Biophys Res Commun. 434:75–80. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoo HJ, Byun HJ, Kim BR, Lee KH, Park SY and Rho SB: DAPk1 inhibits NF-κB activation through TNF-α and INF-γ-induced apoptosis. Cell Signal. 24:1471–1477. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pozniak CD, Radinovic S, Yang A, McKeon F, Kaplan DR and Miller FD: An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science. 289:304–306. 2000. View Article : Google Scholar : PubMed/NCBI | |
Melino G, De Laurenzi V and Vousden KH: p73: Friend or foe in tumorigenesis. Nat Rev Cancer. 2:605–615. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Li A, Liao G, Yang F, Yang J, Chen X and Jiang X: Curcumol triggers apoptosis of p53 mutant triple-negative human breast cancer MDA-MB 231 cells via activation of p73 and PUMA. Oncol Lett. 14:1080–1088. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto T, Oda K, Kubota T, Miyazaki K, Takenouti Y, Nimura Y, Hamaguchi M and Matsuda S: Expression of p73 gene, cell proliferation and apoptosis in breast cancer: Immunohistochemical and clinicopathological study. Oncol Rep. 9:729–735. 2002.PubMed/NCBI | |
Yu XJ, Fang F and Xie J: Relationship between TP73 polymorphism (G4C14-A4T14) and cancer risk: A meta-analysis based on literatures. Gene. 484:42–46. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jung JH, Chae YS, Moon JH, Kang BW, Kim JG, Sohn SK, Park JY, Lee MH and Park HY: TNF superfamily gene polymorphism as prognostic factor in early breast cancer. J Cancer Res Clin Oncol. 136:685–694. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jarvis WD, Turner AJ, Povirk LF, Traylor RS and Grant S: Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C. Cancer Res. 54:1707–1714. 1994.PubMed/NCBI | |
Wang Y and Rao PN: Effect of gossypol on DNA synthesis and cell cycle progression of mammalian cells in vitro. Cancer Res. 44:35–38. 1984.PubMed/NCBI | |
Kitada S, Leone M, Sareth S, Zhai D, Reed JC and Pellecchia M: Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem. 46:4259–4264. 2003. View Article : Google Scholar : PubMed/NCBI | |
Oliver CL, Miranda MB, Shangary S, Land S, Wang S and Johnson DE: (−)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Mol Cancer Ther. 4:23–31. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lei X, Chen Y, Du G, Yu W, Wang X, Qu H, Xia B, He H, Mao J, Zong W, et al: Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J. 20:2147–2149. 2006. View Article : Google Scholar : PubMed/NCBI |