1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ljungberg B, Cowan NC, Hanbury DC, Hora M,
Kuczyk MA, Merseburger AS, Patard JJ, Mulders PF and Sinescu IC;
European association of urology guideline group, : EAU guidelines
on renal cell carcinoma: The 2010 update. Eur Urol. 58:398–406.
2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Colombo M, Raposo G and Théry C:
Biogenesis, secretion, and intercellular interactions of exosomes
and other extracellular vesicles. Annu Rev Cell Dev Biol.
30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sundararajan V, Sarkar FH and Ramasamy TS:
Correction to: The versatile role of exosomes in cancer
progression: Diagnostic and therapeutic implications. Cell Oncol
(Dordr). 41:223–252. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gu X, Erb U, Büchler MW and Zöller M:
Improved vaccine efficacy of tumor exosome compared to tumor lysate
loaded dendritic cells in mice. Int J Cancer. 136:E74–E84. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Stenqvist AC, Nagaeva O, Baranov V and
Mincheva-Nilsson L: Exosomes secreted by human placenta carry
functional Fas ligand and TRAIL molecules and convey apoptosis in
activated immune cells, suggesting exosome-mediated immune
privilege of the fetus. J Immunol. 191:5515–5523. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen G, Huang AC, Zhang W, Zhang G, Wu M,
Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1
contributes to immunosuppression and is associated with anti-PD-1
response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wieckowski EU, Visus C, Szajnik M,
Szczepanski MJ, Storkus WJ and Whiteside TL: Tumor-derived
microvesicles promote regulatory T cell expansion and induce
apoptosis in tumor-reactive activated CD8+ T
lymphocytes. J Immunol. 183:3720–3730. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Valenti R, Huber V, Filipazzi P, Pilla L,
Sovena G, Villa A, Corbelli A, Fais S, Parmiani G and Rivoltini L:
Human tumor-released microvesicles promote the differentiation of
myeloid cells with transforming growth factor-beta-mediated
suppressive activity on T lymphocytes. Cancer Res. 66:9290–9298.
2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang F, Wan J, Hao S, Deng X, Chen L and
Ma L: TGF-β1-silenced leukemia cell-derived exosomes target
dendritic cells to induce potent anti-leukemic immunity in a mouse
model. Cancer Immunol Immunother. 66:1321–1331. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang F, Wan J, Hu W and Hao S:
Enhancement of anti-leukemia immunity by leukemia-derived exosomes
via downregulation of TGF-β1 expression. Cell Physiol Biochem.
44:240–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chalmin F, Ladoire S, Mignot G, Vincent J,
Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau
D, et al: Membrane-associated Hsp72 from tumor-derived exosomes
mediates STAT3-dependent immunosuppressive function of mouse and
human myeloid-derived suppressor cells. J Clin Invest. 120:457–471.
2010.PubMed/NCBI
|
13
|
Yang MQ, Du Q, Varley PR, Goswami J, Liang
Z, Wang R, Li H, Stolz DB and Geller DA: Interferon regulatory
factor 1 priming of tumour-derived exosomes enhances the antitumour
immune response. Br J Cancer. 118:62–71. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Escola JM, Kleijmeer MJ, Stoorvogel W,
Griffith JM, Yoshie O and Geuze HJ: Selective enrichment of
tetraspan proteins on the internal vesicles of multivesicular
endosomes and on exosomes secreted by human B-lymphocytes. J Biol
Chem. 273:20121–20127. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xie Y, Bai O, Zhang H, Yuan J, Zong S,
Chibbar R, Slattery K, Qureshi M, Wei Y, Deng Y and Xiang J:
Membrane-bound HSP70-engineered myeloma cell-derived exosomes
stimulate more efficient CD8(+) CTL- and NK-mediated antitumour
immunity than exosomes released from heat-shocked tumour cells
expressing cytoplasmic HSP70. J Cell Mol Med. 14:2655–2666. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Bu N, Wu H, Sun B, Zhang G, Zhan S, Zhang
R and Zhou L: Exosome-loaded dendritic cells elicit tumor-specific
CD8+ cytotoxic T cells in patients with glioma. J
Neurooncol. 104:659–667. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hao S, Bai O, Yuan J, Qureshi M and Xiang
J: Dendritic cell-derived exosomes stimulate stronger
CD8+ CTL responses and antitumor immunity than tumor
cell-derived exosomes. Cell Mol Immunol. 3:205–211. 2006.PubMed/NCBI
|
18
|
Yao Y, Chen L, Wei W, Deng X, Ma L and Hao
S: Tumor cell-derived exosome-targeted dendritic cells stimulate
stronger CD8+ CTL responses and antitumor immunities.
Biochem Biophys Res Commun. 436:60–65. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kreuwel HT, Morgan DJ, Krahl T, Ko A,
Sarvetnick N and Sherman LA: Comparing the relative role of
perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in
CD8+ T cell-mediated insulin-dependent diabetes
mellitus. J Immunol. 163:4335–4341. 1999.PubMed/NCBI
|
20
|
Sayers TJ, Brooks AD, Lee JK, Fenton RG,
Komschlies KL, Wigginton JM, Winkler-Pickett R and Wiltrout RH:
Molecular mechanisms of immune-mediated lysis of murine renal
cancer: Differential contributions of perforin-dependent versus
Fas-mediated pathways in lysis by NK and T cells. J Immunol.
161:3957–3965. 1998.PubMed/NCBI
|
21
|
Seki N, Brooks AD, Carter CR, Back TC,
Parsoneault EM, Smyth MJ, Wiltrout RH and Sayers TJ: Tumor-specific
CTL kill murine renal cancer cells using both perforin and Fas
ligand-mediated lysis in vitro, but cause tumor regression in vivo
in the absence of perforin. J Immunol. 168:3484–3492. 2002.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y, Luo CL, He BC, Zhang JM, Cheng G
and Wu XH: Exosomes derived from IL-12-anchored renal cancer cells
increase induction of specific antitumor response in vitro: A novel
vaccine for renal cell carcinoma. Int J Oncol. 36:133–140.
2010.PubMed/NCBI
|
23
|
Wang J, De Veirman K, Faict S, Frassanito
MA, Ribatti D, Vacca A and Menu E: Multiple myeloma exosomes
establish a favourable bone marrow microenvironment with enhanced
angiogenesis and immunosuppression. J Pathol. 239:162–173. 2016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Baldan V, Griffiths R, Hawkins RE and
Gilham DE: Efficient and reproducible generation of
tumour-infiltrating lymphocytes for renal cell carcinoma. Br J
Cancer. 112:1510–1518. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yuan Y, Zhang Y, Zhao S, Chen J, Yang J,
Wang T, Zou H, Wang Y, Gu J, Liu X, et al: Cadmium-induced
apoptosis in neuronal cells is mediated by Fas/FasL-mediated
mitochondrial apoptotic signaling pathway. Sci Rep. 8:88372018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Junker K, Heinzelmann J, Beckham C, Ochiya
T and Jenster G: Extracellular vesicles and their role in urologic
malignancies. Eur Urol. 70:323–331. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Graner MW, Schnell S and Olin MR:
Tumor-derived exosomes, microRNAs, and cancer immune suppression.
Semin Immunopathol. 40:505–515. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Barros FM, Carneiro F, Machado JC and Melo
SA: Exosomes and immune response in cancer: Friends or foes? Front
Immunol. 9:7302018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ludwig S, Floros T, Theodoraki MN, Hong
CS, Jackson EK, Lang S and Whiteside TL: Suppression of lymphocyte
functions by plasma exosomes correlates with disease activity in
patients with head and neck cancer. Clin Cancer Res. 23:4843–4854.
2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Troyer RM, Ruby CE, Goodall CP, Yang L,
Maier CS, Albarqi HA, Brady JV, Bathke K, Taratula O, Mourich D and
Bracha S: Exosomes from osteosarcoma and normal osteoblast differ
in proteomic cargo and immunomodulatory effects on T cells. Exp
Cell Res. 358:369–376. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Szczepanski MJ, Szajnik M, Welsh A,
Whiteside TL and Boyiadzis M: Blast-derived microvesicles in sera
from patients with acute myeloid leukemia suppress natural killer
cell function via membrane-associated transforming growth
factor-beta1. Haematologica. 96:1302–1309. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kunigelis KE and Graner MW: The dichotomy
of tumor exosomes (TEX) in cancer immunity: Is it all in the
ConTEXt? Vaccines (Basel). 3:1019–1051. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mignot G, Roux S, Thery C, Ségura E and
Zitvogel L: Prospects for exosomes in immunotherapy of cancer. J
Cell Mol Med. 10:376–388. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C, Du
Z and Yin H: Tumor-derived exosomes elicit tumor suppression in
murine hepatocellular carcinoma models and humans in vitro.
Hepatology. 64:456–472. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ichim TE, Zhong Z, Kaushal S, Zheng X, Ren
X, Hao X, Joyce JA, Hanley HH, Riordan NH, Koropatnick J, et al:
Exosomes as a tumor immune escape mechanism: Possible therapeutic
implications. J Transl Med. 6:372008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vignaux F, Vivier E, Malissen B,
Depraetere V, Nagata S and Golstein P: TCR/CD3 coupling to
Fas-based cytotoxicity. J Exp Med. 181:781–786. 1995. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lenardo M, Chan KM, Hornung F, McFarland
H, Siegel R, Wang J and Zheng L: Mature T lymphocyte
apoptosis-immune regulation in a dynamic and unpredictable
antigenic environment. Annu Rev Immunol. 17:221–253. 1999.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Kang YT, Kim YJ, Bu J, Cho YH, Han SW and
Moon BI: High-purity capture and release of circulating exosomes
using an exosome-specific dual-patterned immunofiltration (ExoDIF)
device. Nanoscale. 9:13495–13505. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dai S, Wei D, Wu Z, Zhou X, Wei X and
Huang H: Phase I clinical trial of autologous ascites-derived
exosomes combined with GM-CSF for colorectal cancer. Mol Ther.
16:782–790. 2008. View Article : Google Scholar : PubMed/NCBI
|