Cellular senescence in ionizing radiation (Review)
- Authors:
- Zhengting Chen
- Ke Cao
- Yaoxiong Xia
- Yunfen Li
- Yu Hou
- Li Wang
- Lan Li
- Li Chang
- Wenhui Li
-
Affiliations: Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China - Published online on: June 24, 2019 https://doi.org/10.3892/or.2019.7209
- Pages: 883-894
This article is mentioned in:
Abstract
Hayflick L and Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI | |
Sharpless NE and Sherr CJ: Forging a signature of in vivo senescence. Nat Rev Cancer. 15:397–408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sulli G, Rommel A, Wang X, Kolar MJ, Puca F, Saghatelian A, Plikus MV, Verma IM and Panda S: Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 553:351–355. 2018. View Article : Google Scholar : PubMed/NCBI | |
McRobb LS, McKay MJ, Gamble JR, Grace M, Moutrie V, Santos ED, Lee VS, Zhao Z, Molloy MP and Stoodley MA: Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. Aging (Albany NY). 9:1248–1262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Davalos AR, Coppe JP, Campisi J and Desprez PY: Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29:273–283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J and van Deursen JM: Senescent cells: An emerging target for diseases of ageing. Nat Rev Drug Discov. 16:718–735. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eriksson D and Stigbrand T: Radiation-induced cell death mechanisms. Tumour Biol. 31:363–372. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang Y, Liu S, Liu Y, Xu H, Liang J, Zhu J, Zhang G, Su W, Dong W and Guo Q: Upregulation of EID3 sensitizes breast cancer cells to ionizing radiation-induced cellular senescence. Biomed Pharmacother. 107:606–614. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HQ, To NH, Zadigue P, Kerbrat S, De La Taille A, Le Gouvello S and Belkacemi Y: Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit Rev Oncol Hematol. 129:13–26. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L and Nelson PS: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 18:1359–1368. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hess J, Unger K, Orth M, Schötz U, Schüttrumpf L, Zangen V, Gimenez-Aznar I, Michna A, Schneider L, Stamp R, et al: Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance. Cancer Lett. 386:87–99. 2017. View Article : Google Scholar : PubMed/NCBI | |
Noda A, Hirai Y, Hamasaki K, Mitani H, Nakamura N and Kodama Y: Unrepairable DNA double-strand breaks that are generated by ionising radiation determine the fate of normal human cells. J Cell Sci. 125:5280–5287. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rossiello F, Herbig U, Longhese MP, Fumagalli M and d'Adda di Fagagna F: Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev. 26:89–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M and Boothman DA: Stress-induced premature senescence (SIPS)-influence of SIPS on radiotherapy. J Radiat Res. 49:105–112. 2008. View Article : Google Scholar : PubMed/NCBI | |
He S and Sharpless NE: Senescence in health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li M, You L, Xue J and Lu Y: Ionizing radiation-induced cellular senescence in normal, non-transformed cells and the involved DNA damage response: A mini review. Front Pharmacol. 9:5222018. View Article : Google Scholar : PubMed/NCBI | |
Nagane M, Kuppusamy ML, An J, Mast JM, Gogna R, Yasui H, Yamamori T, Inanami O and Kuppusamy P: Ataxia-telangiectasia mutated (ATM) kinase regulates eNOS expression and modulates radiosensitivity in endothelial cells exposed to ionizing radiation. Radiat Res. 189:519–528. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gire V and Dulic V: Senescence from G2 arrest, revisited. Cell Cycle. 14:297–304. 2015. View Article : Google Scholar : PubMed/NCBI | |
Krenning L, Feringa FM, Shaltiel IA, Van Den Berg J and Medema RH: Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol Cell. 55:59–72. 2014. View Article : Google Scholar : PubMed/NCBI | |
Müllers E, Silva Cascales H, Jaiswal H, Saurin AT and Lindqvist A: Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase. Cell Cycle. 13:2733–2743. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ye C, Zhang X, Wan J, Chang L, Hu W, Bing Z, Zhang S, Li J, He J, Wang J and Zhou G: Radiation-induced cellular senescence results from a slippage of long-term G2 arrested cells into G1 phase. Cell Cycle. 12:1424–1432. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuilman T, Michaloglou C, Mooi WJ and Peeper DS: The essence of senescence. Genes Dev. 24:2463–2479. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Scheiber MN, Neumann C, Calin GA and Zhou D: MicroRNA regulation of ionizing radiation-induced premature senescence. Int J Radiat Oncol Biol Phys. 81:839–848. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M, Yamauchi M, Oka Y, Suzuki K and Yamashita S: Live-cell imaging visualizes frequent mitotic skipping during senescence-like growth arrest in mammary carcinoma cells exposed to ionizing radiation. Int J Radiat Oncol Biol Phys. 83:e241–e250. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hudson D, Kovalchuk I, Koturbash I, Kolb B, Martin OA and Kovalchuk O: Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals. Aging (Albany NY). 3:609–620. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim BC, Han NK, Byun HO, Kim SS, Ahn EK, Chu IS, Leem SH, Lee CK and Lee JS: Time-dependently expressed markers and the characterization for premature senescence induced by ionizing radiation in MCF7. Oncol Rep. 24:395–403. 2010.PubMed/NCBI | |
Studencka M and Schaber J: Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget. 8:30656–30671. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Mori I, Nakayama Y, Miyakoda M, Kodama S and Watanabe M: Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat Res. 155:248–253. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Gu J, Yu D, Wang G, Zhou L, Zhang X, Zhao Y, Chen X, Zheng S, Liu Q, et al: Low-dose radiation induces cell proliferation in human embryonic lung fibroblasts but not in lung cancer cells: Importance of ERK1/2 and AKT signaling pathways. Dose-Response. 14:15593258156221742016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Boerma M and Zhou D: Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Radiat Res. 186:153–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rezáčová M, Rudolfová G, Tichý A, Bačíková A, Mutná D, Havelek R, Vávrová J, Odrážka K, Lukášová E and Kozubek S: Accumulation of DNA damage and cell death after fractionated irradiation. Radiat Res. 175:708–718. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim BC, Yoo HJ, Lee HC, Kang KA, Jung SH, Lee HJ, Lee M, Park S, Ji YH, Lee YS, et al: Evaluation of premature senescence and senescence biomarkers in carcinoma cells and xenograft mice exposed to single or fractionated irradiation. Oncol Rep. 31:2229–2235. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lagadec C, Vlashi E, Della Donna L, Meng Y, Dekmezian C, Kim K and Pajonk F: Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res. 12:R132010. View Article : Google Scholar : PubMed/NCBI | |
Liakou E, Mavrogonatou E, Pratsinis H, Rizou S, Evangelou K, Panagiotou PN, Karamanos NK, Gorgoulis VG and Kletsas D: Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging (Albany NY). 8:1650–1668. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J and Demaria M: Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 27:2652–2660.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ortiz-Montero P, Londoño-Vallejo A and Vernot JP: Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal. 15:172017. View Article : Google Scholar : PubMed/NCBI | |
Johnston CJ, Hernady E, Reed C, Thurston SW, Finkelstein JN and Williams JP: Early alterations in cytokine expression in adult compared to developing lung in mice after radiation exposure. Radiat Res. 173:522–535. 2010. View Article : Google Scholar : PubMed/NCBI | |
Papadopoulou A and Kletsas D: Human lung fibroblasts prematurely senescent after exposure to ionizing radiation enhance the growth of malignant lung epithelial cells in vitro and in vivo. Int J Oncol. 39:989–999. 2011.PubMed/NCBI | |
Liao EC, Hsu YT, Chuah QY, Lee YJ, Hu JY, Huang TC, Yang PM and Chiu SJ: Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 5:e12552014. View Article : Google Scholar : PubMed/NCBI | |
Sugrue MM, Shin DY, Lee SW and Aaronson SA: Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA. 94:9648–9653. 1997. View Article : Google Scholar : PubMed/NCBI | |
Beauséjour CM, Krtolica AF, Galimi F, Narita M, Lowe SW, Yaswen P and Campisi J: Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J. 22:4212–4222. 2014. View Article : Google Scholar | |
Cheng Z, Zheng YZ, Li YQ and Wong CS: Cellular senescence in mouse hippocampus after irradiation and the role of p53 and p21. J Neuropathol Exp Neurol. 76:260–269. 2017. View Article : Google Scholar : PubMed/NCBI | |
Widel M, Lalik A, Krzywon A, Poleszczuk J, Fujarewicz K and Rzeszowska-Wolny J: The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status. Mutat Res. 778:61–70. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lindgren T, Stigbrand T, Råberg A, Riklund K, Johansson L and Eriksson D: Genome wide expression analysis of radiation-induced DNA damage responses in isogenic HCT116 p53+/+ and HCT116 p53-/- colorectal carcinoma cell lines. Int J Radiat Biol. 91:99–111. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Gong H, Pan X, Chang C, Ou Z, Ye S, Yin L, Yang L, Tao T, Zhang Z, et al: p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 25:351–369. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sanada F, Taniyama Y, Muratsu J, Otsu R, Iwabayashi M, Carracedo M, Rakugi H and Morishita R: Activated factor X induces endothelial cell senescence through IGFBP-5. Sci Rep. 6:355802016. View Article : Google Scholar : PubMed/NCBI | |
Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H and Morishita R: IGF binding protein-5 induces cell senescence. Front Endocrinol (Lausanne). 9:532018. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Seu Y, Baek S, Kim MJ, Kim KJ, Kim JH and Kim JR: Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell. 18:4543–4552. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rombouts C, Aerts A, Quintens R, Baselet B, El-Saghire H, Harms-Ringdahl M, Haghdoost S, Janssen A, Michaux A, Yentrapalli R, et al: Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation. Int J Radiat Biol. 90:560–574. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Tang MK, Yao Y, Tang C, Chui YL and Lee KK: BRE plays an essential role in preventing replicative and DNA damage-induced premature senescence. Sci Rep. 6:235062016. View Article : Google Scholar : PubMed/NCBI | |
Lukášová E, Kovarˇík A, Bacˇíková A, Falk M and Kozubek S: Loss of lamin B receptor is necessary to induce cellular senescence. Biochem J. 474:281–300. 2017. View Article : Google Scholar : PubMed/NCBI | |
Freund A, Laberge RM, Demaria M and Campisi J: Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell. 23:2066–2075. 2012. View Article : Google Scholar : PubMed/NCBI | |
Toillon RA, Magné N, Laïos I, Castadot P, Kinnaert E, Van Houtte P, Desmedt C, Leclercq G and Lacroix M: Estrogens decrease gamma-ray-induced senescence and maintain cell cycle progression in breast cancer cells independently of p53. Int J Radiat Oncol Biol Phys. 67:1187–1200. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH III, Becker KG and Gorospe M: Senescence-associated lncRNAs: Senescence-associated long noncoding RNAs. Aging Cell. 12:890–900. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sohn D, Peters D, Piekorz RP, Budach W and Jänicke RU: miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibitor p21WAF1/CIP1 and caspase-3. Oncotarget. 7:15915–15929. 2016. View Article : Google Scholar : PubMed/NCBI | |
Velegzhaninov IO, Ermakova AV and Klokov DY: Low dose ionizing irradiation suppresses cellular senescence in normal human fibroblasts. Int J Radiat Biol. 94:825–828. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dolan DW, Zupanic A, Nelson G, Hall P, Miwa S, Kirkwood TB and Shanley DP: Integrated stochastic model of DNA damage repair by non-homologous end joining and p53/p21-mediated early senescence signalling. PLoS Comput Biol. 11:e10042462015. View Article : Google Scholar : PubMed/NCBI | |
Celià-Terrassa T, Liu DD, Choudhury A, Hang X, Wei Y, Zamalloa J, Alfaro-Aco R, Chakrabarti R, Jiang YZ, Koh BI, et al: Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis. Nat Cell Biol. 19:711–723. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Fisher DE and Flaherty KT: Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol. Apr 9–2019.(Epub ahead of print) Doi: 10.1038/s41571-019-0204-6. View Article : Google Scholar : PubMed/NCBI | |
Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C, et al: T-helper-1-cell cytokines drive cancer into senescence. Nature. 494:361–365. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sato K, Kato A, Sekai M, Hamazaki Y and Minato N: Physiologic thymic involution underlies age-dependent accumulation of senescence-associated CD4(+) T cells. J Immunol. 199:138–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lord CJ and Ashworth A: PARP inhibitors: Synthetic lethality in the clinic. Science. 355:1152–1158. 2017. View Article : Google Scholar : PubMed/NCBI | |
Efimova EV, Mauceri HJ, Golden DW, Labay E, Bindokas VP, Darga TE, Chakraborty C, Barreto-Andrade JC, Crawley C, Sutton HG, et al: Poly(ADP-ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors. Cancer Res. 70:6277–6282. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barreto-Andrade JC, Efimova EV, Mauceri HJ, Beckett MA, Sutton HG, Darga TE, Vokes EE, Posner MC, Kron SJ and Weichselbaum RR: Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiati on. Mol Cancer Ther. 10:1185–1193. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee P, Choudhary GS, Sharma A, Singh K, Heston WD, Ciezki J, Klein EA and Almasan A: PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-def icient prostate cancer cells. PLoS One. 8:e604082013. View Article : Google Scholar : PubMed/NCBI | |
Azad A, Bukczynska P, Jackson S, Haupt Y, Cullinane C, McArthur GA and Solomon B: Co-targeting deoxyribonucleic acid-dependent protein kinase and poly(adenosine diphosphate-ribose) polymerase-1 promotes accelerated senescence of irradiated cancer cells. Int J Radiat Oncol Biol Phys. 88:385–394. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cao F, Ju X, Chen D, Jiang L, Zhu X, Qing S, Fang F, Shen Y, Jia Z and Zhang H: Phosphorothioatemodified antisense oligonucleotides against human telomerase reverse transcriptase sensitize cancer cells to radiotherapy. Mol Med Rep. 16:2089–2094. 2017. View Article : Google Scholar : PubMed/NCBI | |
Orun O, Tiber PM and Serakinci N: Partial knockdown of TRF2 increase radiosensitivity of human mesenchymal stem cells. Int J Biol Macromol. 90:53–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nam HY, Han MW, Chang HW, Kim SY and Kim SW: Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy. 9:1631–1632. 2013. View Article : Google Scholar : PubMed/NCBI | |
Marampon F, Megiorni F, Camero S, Crescioli C, McDowell HP, Sferra R, Vetuschi A, Pompili S, Ventura L, De Felice F, et al: HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Lett. 397:1–11. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pérès EA, Gérault AN, Samuel V, Roussel S, Toutain J, Divoux D, Guillamo JS, Sanson M, Bernaudin M and Petit E: Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe. Oncotarget. 6:2101–2119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ham SW, Jeon HY and Kim H: Verapamil augments carmustine- and irradiation-induced senescence in glioma cells by reducing intracellular reactive oxygen species and calcium ion levels. Tumour Biol. 39:10104283176922442017. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Morsbach F, Sander D, Gheorghiu L, Nanda A, Benes C, Kriegs M, Krause M, Dikomey E, Baumann M, et al: EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks. Cancer Res. 71:6261–6269. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mirzayans R, Andrais B and Murray D: Impact of premature senescence on radiosensitivity measured by high throughput cell-based assays. Int J Mol Sci. 18:E14602017. View Article : Google Scholar : PubMed/NCBI | |
Francica P, Aebersold DM and Medova M: Senescence as biologic endpoint following pharmacological targeting of receptor tyrosine kinases in cancer. Biochem Pharmacol. 126:1–12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miao GY, Zhou X, Zhang X, Xie Y, Sun C, Liu Y, Gan L and Zhang H: Telomere-mitochondrion links contribute to induction of senescence in MCF-7 cells after carbon-ion irradiation. Asian Pac J Cancer Prev. 17:1993–1998. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ernst A, Anders H, Kapfhammer H, Orth M, Hennel R, Seidl K, Winssinger N, Belka C, Unkel S and Lauber K: HSP90 inhibition as a means of radiosensitizing resistant, aggressive soft tissue sarcomas. Cancer Lett. 365:211–222. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li P, Hou M, Lou F, Björkholm M and Xu D: Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells. Int J Biochem Cell Biol. 44:1531–1540. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maeda T, Nakamura K, Atsumi K, Hirakawa M, Ueda Y and Makino N: Radiation-associated changes in the length of telomeres in peripheral leukocytes from inpatients with cancer. Int J Radiat Biol. 89:106–109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jinno-Oue A, Shimizu N, Hamada N, Wada S, Tanaka A, Shinagawa M, Ohtsuki T, Mori T, Saha MN, Hoque AS, et al: Irradiation with carbon ion beams induces apoptosis, autophagy, and cellular senescence in a human glioma-derived cell line. Int J Radiat Oncol Biol Phys. 76:229–241. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M, Lin S, Huang L, Chung EJ, Citrin DE, et al: Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys. 99:353–361. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chung EJ, McKay-Corkum G, Chung S, White A, Scroggins BT, Mitchell JB, Mulligan-Kehoe MJ and Citrin D: Truncated plasminogen activator inhibitor-1 protein protects from pulmonary fibrosis mediated by irradiation in a murine model. Int J Radiat Oncol Biol Phys. 94:1163–1172. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chung EJ, Sowers A, Thetford A, McKay-Corkum G, Chung SI, Mitchell JB and Citrin DE: Mammalian target of rapamycin inhibition with rapamycin mitigates radiation-induced pulmonary fibrosis in a murine model. Int J Radiat Oncol Biol Phys. 96:857–866. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shao L, Feng W, Li H, Gardner D, Luo Y, Wang Y, Liu L, Meng A, Sharpless NE and Zhou D: Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood. 123:3105–3115. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, et al: Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 22:78–83. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Wang YY, Zhang JL, Li DG and Meng AM: p38 MAPK inhibitor insufficiently attenuates HSC senescence administered long-term after 6 Gy total body irradiation in mice. Int J Mol Sci. 17:E9052016. View Article : Google Scholar : PubMed/NCBI | |
Ness KK, Armstrong GT, Kundu M, Wilson CL, Tchkonia T and Kirkland JL: Frailty in childhood cancer survivors. Cancer. 121:1540–1547. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ariffin H, Azanan MS, Abd Ghafar SS, Oh L, Lau KH, Thirunavakarasu T, Sedan A, Ibrahim K, Chan A, Chin TF, et al: Young adult survivors of childhood acute lymphoblastic leukemia show evidence of chronic inflammation and cellular aging. Cancer. 123:4207–4214. 2017. View Article : Google Scholar : PubMed/NCBI | |
Artoni F, Kreipke RE, Palmeira O, Dixon C, Goldberg Z and Ruohola-Baker H: Loss of foxo rescues stem cell aging in Drosophila germ line. eLife. 6:e278422017. View Article : Google Scholar : PubMed/NCBI | |
Alessio N, Capasso S, Di Bernardo G, Cappabianca S, Casale F, Calarco A, Cipollaro M, Peluso G and Galderisi U: Mesenchymal stromal cells having inactivated RB1 survive following low irradiation and accumulate damaged DNA: Hints for side effects following radiotherapy. Cell Cycle. 16:251–258. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Zhang J, Lu L, Li D, Wang Y, Huang S, Li C, Zhang Z, Li J and Meng A: Identification of hub genes of pneumocyte senescence induced by thoracic irradiation using weighted gene coexpression network analysis. Mol Med Rep. 13:107–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alessio N, Esposito G, Galano G, De Rosa R, Anello P, Peluso G, Tabocchini MA and Galderisi U: Irradiation of mesenchymal stromal cells with low and high doses of alpha particles induces senescence and/or apoptosis. J Cell Biochem. 118:2993–3002. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ramos Silva C, Cabral FV, de Camargo CF, Núñez SC, Mateus Yoshimura T, de Lima Luna AC, Maria DA and Ribeiro MS: Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure. J Biophotonics. 9:1157–1166. 2016. View Article : Google Scholar | |
Hamdi DH, Chevalier F, Groetz JE, Durantel F, Thuret JY, Mann C and Saintigny Y: Comparable senescence induction in three-dimensional human cartilage model by exposure to therapeutic doses of x-rays or C-ions. Int J Radiat Oncol Biol Phys. 95:139–146. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL and van Deursen JM: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479:232–236. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kosmacek EA, Chatterjee A, Tong Q, Lin C and Oberley-Deegan RE: MnTnBuOE-2-PyP protects normal colorectal fibroblasts from radiation damage and simultaneously enhances radio/chemotherapeutic killing of colorectal cancer cells. Oncotarget. 7:34532–34545. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beach TA, Johnston CJ, Groves AM, Williams JP and Finkelstein JN: Radiation induced pulmonary fibrosis as a model of progressive fibrosis: Contributions of DNA damage, inflammatory response and cellular senescence genes. Exp Lung Res. 43:134–149. 2017. View Article : Google Scholar : PubMed/NCBI | |
Philipp J, Azimzadeh O, Subramanian V, Merl-Pham J, Lowe D, Hladik D, Erbeldinger N, Ktitareva S, Fournier C, Atkinson MJ, et al: Radiation-induced endothelial inflammation is transferred via the secretome to recipient cells in a STAT-mediated process. J Proteome Res. 16:3903–3916. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee A, Kosmacek EA and Oberley-Deegan RE: MnTE-2-PyP treatment, or NOX4 inhibition, protects against radiation-induced damage in mouse primary prostate fibroblasts by inhibiting the TGF-Beta 1 signaling pathway. Radiat Res. 187:367–381. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang Y, Pazhanisamy SK, Shao L, Batinic-Haberle I, Meng A and Zhou D: Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radic Biol Med. 51:30–37. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, Zhang H, Lu L, Li C, Huang S, et al: Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med. 87:15–25. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kaur E, Rajendra J, Jadhav S, Shridhar E, Goda JS, Moiyadi A and Dutt S: Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis. 36:685–695. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roberson RS, Kussick SJ, Vallieres E, Chen SY and Wu DY: Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in huma n lung cancers. Cancer Res. 65:2795–2803. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chakradeo S, Elmore LW and Gewirtz DA: Is senescence reversible? Curr Drug Targets. 17:460–466. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tato-Costa J, Casimiro S, Pacheco T, Pires R, Fernandes A, Alho I, Pereira P, Costa P, Castelo HB, Ferreira J and Costa L: Therapy-induced cellular senescence induces epithelial-to-mesenchymal transition and increases invasiveness in rectal cancer. Clin Colorectal Cancer. 15:170–178.e3. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gewirtz DA, Alotaibi M, Yakovlev VA and Povirk LF: Tumor cell recovery from senescence induced by radiation with PARP inhibition. Radiat Res. 186:327–332. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alotaibi M, Sharma K, Saleh T, Povirk LF, Hendrickson EA and Gewirtz DA: Radiosensitization by PARP inhibition in DNA repair proficient and deficient tumor cells: Proliferative recovery in senescent cells. Radiat Res. 185:229–245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hellevik T, Pettersen I, Berg V, Winberg JO, Moe BT, Bartnes K, Paulssen RH, Busund LT, Bremnes R, Chalmers A and Martinez-Zubiaurre I: Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced. Radiat Oncol. 7:592012. View Article : Google Scholar : PubMed/NCBI | |
Frame FM, Savoie H, Bryden F, Giuntini F, Mann VM, Simms MS, Boyle RW and Maitland NJ: Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis. Cancer Med. 5:61–73. 2016. View Article : Google Scholar : PubMed/NCBI | |
Malaquin N, Martinez A and Rodier F: Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol. 82:39–49. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wiley CD and Campisi J: From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab. 23:1013–1021. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rodier F and Campisi J: Four faces of cellular senescence. J Cell Biol. 192:547–556. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rzeszowska-Wolnyab J and Widel M: Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy. Eur J Pharmacol. 625:156–164. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jalal N, Haq S, Anwar N, Nazeer S and Saeed U: Radiation induced bystander effect and DNA damage. J Cancer Res Ther. 10:819–833. 2014. View Article : Google Scholar : PubMed/NCBI | |
Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G and Galderisi U: Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY). 8:1316–1329. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mowla SN, Lam EW and Jat PS: Cellular senescence and aging: The role of B-MYB. Aging Cell. 13:773–779. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Li F, Liu B, Zheng X, Li H, Ye F, Chen W and Li Q: Different mitochondrial fragmentation after irradiation with X-rays and carbon ions in HeLa cells and its influence on cellular apoptosis. Biochem Biophys Res Commun. 500:958–965. 2018. View Article : Google Scholar : PubMed/NCBI | |
Capasso S, Alessio N, Squillaro T, Di Bernardo G, Melone MA, Cipollaro M, Peluso G and Galderisi U: Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells. Oncotarget. 6:39457–39468. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ziegler DV, Wiley CD and Velarde MC: Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell. 14:1–7. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lafargue A, Degorre C, Corre I, Alves-Guerra MC, Gaugler MH, Vallette F, Pecqueur C and Paris F: Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic Biol Med. 108:750–759. 2017. View Article : Google Scholar : PubMed/NCBI | |
Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI and Cater MA: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 14:100–115. 2018. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li T and Chen ZJ: The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med. 215:1287–1299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Wang H, Ren J, Chen Q and Chen ZJ: cGAS is essential for cellular senescence. Proc Natl Acad Sci USA. 114:E4612–E4620. 2017. View Article : Google Scholar : PubMed/NCBI | |
Glück S, Guey B, Gulen MF, Wolter K, Kang TW, Schmacke NA, Bridgeman A, Rehwinkel J, Zender L and Ablasser A: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol. 19:1061–1070. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Coppé JP and Lam EW: Cellular senescence: The sought or the unwanted? Trends Mol Med. 24:871–885. 2018. View Article : Google Scholar : PubMed/NCBI | |
Leite de Oliveira R and Bernards R: Anti-cancer therapy: Senescence is the new black. EMBO J. 37:e993862018. View Article : Google Scholar : PubMed/NCBI |