1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Quaresma M, Coleman MP and Rachet B:
40-year trends in an index of survival for all cancers combined and
survival adjusted for age and sex for each cancer in England and
Wales, 1971–2011: A population-based study. Lancet. 385:1206–1218.
2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Miller KD, Siegel RL, Lin CC, Mariotto AB,
Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer
treatment and survivorship statistics, 2016. CA Cancer J Clin.
66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hidalgo M, Cascinu S, Kleeff J, Labianca
R, Lohr JM, Neoptolemos J, Real FX, Van Laethem JL and Heinemann V:
Addressing the challenges of pancreatic cancer: Future directions
for improving outcomes. Pancreatology. 15:8–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lin QJ, Yang F, Jin C and Fu DL: Current
status and progress of pancreatic cancer in China. World J
Gastroentero. 21:7988–8003. 2015. View Article : Google Scholar
|
8
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kamisawa T, Wood LD, Itoi T and Takaori K:
Pancreatic cancer. Lancet. 388:73–85. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Heinemann V, Boeck S, Hinke A, Labianca R
and Louvet C: Meta-analysis of randomized trials: Evaluation of
benefit from gemcitabine-based combination chemotherapy applied in
advanced pancreatic cancer. BMC Cancer. 8:822008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J and
Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 59:225–249.
2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vincent A, Herman J, Schulick R, Hruban RH
and Goggins M: Pancreatic cancer. Lancet. 378:607–620. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Conroy T, Desseigne F, Ychou M, Bouche O,
Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de
la Fouchardiere C, et al: FOLFIRINOX versus gemcitabine for
metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Mohammed S, Van Buren G II and Fisher WE:
Pancreatic cancer: Advances in treatment. World J Gastroenterol.
20:9354–9360. 2014.PubMed/NCBI
|
15
|
Okazaki T, Chikuma S, Iwai Y, Fagarasan S
and Honjo T: A rheostat for immune responses: The unique properties
of PD-1 and their advantages for clinical application. Nat Immunol.
14:1212–1218. 2013. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Wei SC, Duffy CR and Allison JP:
Fundamental mechanisms of immune checkpoint blockade therapy.
Cancer Discov. 8:1069–1086. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vassaux G, Angelova A, Baril P, Midoux P,
Rommelaere J and Cordelier P: The promise of gene therapy for
pancreatic cancer. Hum Gene Ther. 27:127–133. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mantovani A: The chemokine system:
Redundancy for robust outputs. Immunol Today. 20:254–257. 1999.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Moser B and Willimann K: Chemokines: Role
in inflammation and immune surveillance. Ann Rheum Dis. 63 (Suppl
2):ii84–ii89. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zabel BA, Zuniga L, Ohyama T, Allen SJ,
Cichy J, Handel TM and Butcher EC: Chemoattractants, extracellular
proteases, and the integrated host defense response. Exp Hematol.
34:1021–1032. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Van Damme J, Proost P, Lenaerts JP and
Opdenakker G: Structural and functional identification of two
human, tumor-derived monocyte chemotactic proteins (MCP-2 and
MCP-3) belonging to the chemokine family. J Exp Med. 176:59–65.
1992. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fujiwara H and Hamaoka T: Coordination of
chemokine and adhesion systems in intratumoral T cell migration
responsible for the induction of tumor regression. Int
Immunopharmacol. 1:613–623. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lacalle RA, Blanco R, Carmona-Rodriguez L,
Martin-Leal A, Mira E and Manes S: Chemokine receptor signaling and
the hallmarks of cancer. Int Rev Cell Mol Biol. 331:181–244. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Dite P, Hermanova M, Trna J, Novotny I,
Ruzicka M, Liberda M and Bartkova A: The role of chronic
inflammation: Chronic pancreatitis as a risk factor of pancreatic
cancer. Dig Dis. 30:277–283. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ibrahimi S, Mukherjee S, Alhyari L, Rubin
E and Aljumaily R: Spontaneous regression of metastatic pancreatic
cancer: A role for recurrent inflammation. Pancreas. 48:e4–e6.
2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Incio J, Liu H, Suboj P, Chin SM, Chen IX,
Pinter M, Ng MR, Nia HT, Grahovac J, Kao S, et al: Obesity-Induced
inflammation and desmoplasia promote pancreatic cancer progression
and resistance to chemotherapy. Cancer Discov. 6:852–869. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hayes JB, Sircy LM, Heusinkveld LE, Ding
W, Leander RN, McClelland EE and Nelson DE: Modulation of
macrophage inflammatory nuclear Factor κB (NF-κB) signaling by
intracellular cryptococcus neoformans. J Biol Chem.
291:15614–15627. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lu C, Paschall AV, Shi H, Savage N, Waller
JL, Sabbatini ME, Oberlies NH, Pearce C and Liu K: The MLL1-H3K4me3
Axis-Mediated PD-L1 expression and pancreatic cancer immune
evasion. J Natl Cancer Inst. 1092017.doi: 10.1093/jnci/djw283.
|
29
|
Cui K, Zou H, Shi M, Ou Y, Han L, Zhang B,
Hu D and Li S: Gene expression profiles in chemokine (C-C Motif)
Ligand 21-Overexpressing pancreatic cancer cells. Pathol Oncol Res.
Apr 23–2018.doi: 10.1007/s12253-018-0390-z (Epub ahead of print).
View Article : Google Scholar
|
30
|
Hutchinson L: Pancreatic cancer:
Disrupting the chemokine axis in PDAC. Nat Rev Clin Oncol.
13:3302016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Marchesi F, Grizzi F, Laghi L, Mantovani A
and Allavena P: Molecular mechanisms of pancreatic cancer
dissemination: The role of the chemokine system. Curr Pharm Des.
18:2432–2438. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nakata B, Fukunaga S, Noda E, Amano R,
Yamada N and Hirakawa K: Chemokine receptor CCR7 expression
correlates with lymph node metastasis in pancreatic cancer.
Oncology. 74:69–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Feig C, Jones JO, Kraman M, Wells RJ,
Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL,
et al: Targeting CXCL12 from FAP-expressing carcinoma-associated
fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic
cancer. Proc Natl Acad Sci USA. 110:20212–20217. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gebauer F, Tachezy M, Effenberger K, von
Loga K, Zander H, Marx A, Kaifi JT, Sauter G, Izbicki JR and
Bockhorn M: Prognostic impact of CXCR4 and CXCR7 expression in
pancreatic adenocarcinoma. J Surg Oncol. 104:140–145. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee YH and Song GG: Association between
chemokine receptor 5 delta32 polymorphism and susceptibility to
cancer: A meta-analysis. J Recept Signal Transduct Res. 35:509–515.
2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Anders S and Huber W: Differential
expression analysis for sequence count data. Genome Biol.
11:R1062010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yip SH, Wang P, Kocher JA, Sham PC and
Wang J: Linnorm: Improved statistical analysis for single cell
RNA-seq expression data. Nucleic Acids Res. 45:e1792017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang DW, Sherman BT, Tan Q, Kir J, Liu D,
Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA:
DAVID Bioinformatics Resources: Expanded annotation database and
novel algorithms to better extract biology from large gene lists.
Nucleic Acids Res. 35:W169–W175. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res 43
(Database Issue). D447–D452. 2015. View Article : Google Scholar
|
40
|
Montojo J, Zuberi K, Rodriguez H, Bader GD
and Morris Q: GeneMANIA: Fast gene network construction and
function prediction for Cytoscape. F1000Res. 3:1532014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liao X, Huang K, Huang R, Liu X, Han C, Yu
L, Yu T, Yang C, Wang X and Peng T: Genome-scale analysis to
identify prognostic markers in patients with early-stage pancreatic
ductal adenocarcinoma after pancreaticoduodenectomy. Onco Targets
Ther. 10:4493–4506. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liao X, Zhu G, Huang R, Yang C, Wang X,
Huang K, Yu T, Han C, Su H and Peng T: Identification of potential
prognostic microRNA biomarkers for predicting survival in patients
with hepatocellular carcinoma. Cancer Manag Res. 10:787–803. 2018.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Heagerty PJ and Zheng Y: Survival model
predictive accuracy and ROC curves. Biometrics. 61:92–105. 2005.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liberzon A, Birger C, Thorvaldsdottir H,
Ghandi M, Mesirov JP and Tamayo P: The molecular signatures
database (MSigDB) hallmark gene set collection. Cell Syst.
1:417–425. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Francois O, Martins H, Caye K and
Schoville SD: Controlling false discoveries in genome scans for
selection. Mol Ecol. 25:454–469. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Glickman ME, Rao SR and Schultz MR: False
discovery rate control is a recommended alternative to
Bonferroni-type adjustments in health studies. J Clin Epidemiol.
67:850–857. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Reiner A, Yekutieli D and Benjamini Y:
Identifying differentially expressed genes using false discovery
rate controlling procedures. Bioinformatics. 19:368–375. 2003.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Sarvaiya PJ, Guo D, Ulasov I, Gabikian P
and Lesniak MS: Chemokines in tumor progression and metastasis.
Oncotarget. 4:2171–2185. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xiao G, Wang X and Yu Y: CXCR4/Let-7a Axis
regulates metastasis and chemoresistance of pancreatic cancer cells
through targeting HMGA2. Cell Physiol Biochem. 43:840–851. 2017.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Gao Z, Wang X, Wu K, Zhao Y and Hu G:
Pancreatic stellate cells increase the invasion of human pancreatic
cancer cells through the stromal cell-derived factor-1/CXCR4 axis.
Pancreatology. 10:186–193. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Shakir M, Tang D, Zeh HJ, Tang SW,
Anderson CJ, Bahary N and Lotze MT: The chemokine receptors
CXCR4/CXCR7 and their primary heterodimeric ligands CXCL12 and
CXCL12/high mobility group box 1 in pancreatic cancer growth and
development: Finding flow. Pancreas. 44:528–534. 2015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang J, Liu C, Mo X, Shi H and Li S:
Mechanisms by which CXCR4/CXCL12 cause metastatic behavior in
pancreatic cancer. Oncol Lett. 15:1771–1776. 2018.PubMed/NCBI
|
54
|
Wang J, Wang H, Cai J, Du S, Xin B, Wei W,
Zhang T and Shen X: Artemin regulates CXCR4 expression to induce
migration and invasion in pancreatic cancer cells through
activation of NF-κB signaling. Exp Cell Res. 365:12–23. 2018.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Sleightholm RL, Neilsen BK, Li J, Steele
MM, Singh RK, Hollingsworth MA and Oupicky D: Emerging roles of the
CXCL12/CXCR4 axis in pancreatic cancer progression and therapy.
Pharmacol Ther. 179:158–170. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Little EC, Kubic JD, Salgia R, Grippo PJ
and Lang D: Canonical and alternative transcript expression of PAX6
and CXCR4 in pancreatic cancer. Oncol Lett. 13:4027–4034. 2017.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Aravindan S, Ramraj S, Kandasamy K,
Thirugnanasambandan SS, Somasundaram DB, Herman TS and Aravindan N:
Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and
COX2-dependent dissemination destiny of treatment-resistant
pancreatic cancer cells. Oncotarget. 8:5717–5734. 2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Chakraborty K, Bose A, Chakraborty T,
Sarkar K, Goswami S, Pal S and Baral R: Restoration of dysregulated
CC chemokine signaling for monocyte/macrophage chemotaxis in head
and neck squamous cell carcinoma patients by neem leaf glycoprotein
maximizes tumor cell cytotoxicity. Cell Mol Immunol. 7:396–408.
2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Jo H, Zhang R, Zhang H, McKinsey TA, Shao
J, Beauchamp RD, Ballard DW and Liang P: NF-kappa B is required for
H-ras oncogene induced abnormal cell proliferation and
tumorigenesis. Oncogene. 19:841–849. 2000. View Article : Google Scholar : PubMed/NCBI
|
60
|
Wong M and Fish EN: RANTES and MIP-1alpha
activate stats in T cells. J Biol Chem. 273:309–314. 1998.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Manes S, Mira E, Colomer R, Montero S,
Real LM, Gomez-Mouton C, Jimenez-Baranda S, Garzon A, Lacalle RA,
Harshman K, et al: CCR5 expression influences the progression of
human breast cancer in a p53-dependent manner. J Exp Med.
198:1381–1389. 2003. View Article : Google Scholar : PubMed/NCBI
|
62
|
Datar I, Qiu X, Ma HZ, Yeung M, Aras S, de
la Serna I, Al-Mulla F, Tan TZ, Thiery JP, Trumbly R, et al:
Correction: RKIP regulates CCL5 expression to inhibit breast cancer
invasion and metastasis by controlling macrophage infiltration.
Oncotarget. 7:269252016. View Article : Google Scholar : PubMed/NCBI
|
63
|
Velasco-Velazquez M and Pestell RG: The
CCL5/CCR5 axis promotes metastasis in basal breast cancer.
Oncoimmunology. 2:e236602013. View Article : Google Scholar : PubMed/NCBI
|
64
|
Srivastava A, Pandey SN, Choudhuri G and
Mittal B: CCR5 Delta32 polymorphism: Associated with gallbladder
cancer susceptibility. Scand J Immunol. 67:516–522. 2008.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Li K, Xu B, Xu G and Liu R: CCR7 regulates
Twist to induce the epithelial-mesenchymal transition in pancreatic
ductal adenocarcinoma. Tumour Biol. 37:419–424. 2016. View Article : Google Scholar : PubMed/NCBI
|
66
|
Feng R, Morine Y, Ikemoto T, Imura S,
Iwahashi S, Saito Y and Shimada M: Nab-paclitaxel interrupts
cancer-stromal interaction through C-X-C motif chemokine
10-mediated interleukin-6 downregulation in vitro. Cancer Sci.
109:2509–2519. 2018. View Article : Google Scholar : PubMed/NCBI
|
67
|
Lanca T, Costa MF, Goncalves-Sousa N, Rei
M, Grosso AR, Penido C and Silva-Santos B: Protective role of the
inflammatory CCR2/CCL2 chemokine pathway through recruitment of
type 1 cytotoxic γδ T lymphocytes to tumor beds. J Immunol.
190:6673–6680. 2013. View Article : Google Scholar : PubMed/NCBI
|
68
|
Gonzalez-Arriagada WA, Lozano-Burgos C,
Zuniga-Moreta R, Gonzalez-Diaz P and Coletta RD:
Clinicopathological significance of chemokine receptor (CCR1, CCR3,
CCR4, CCR5, CCR7 and CXCR4) expression in head and neck squamous
cell carcinomas. J Oral Pathol Med. 47:755–763. 2018. View Article : Google Scholar : PubMed/NCBI
|
69
|
Farrow B and Evers BM: Inflammation and
the development of pancreatic cancer. Surg Oncol. 10:153–169. 2002.
View Article : Google Scholar : PubMed/NCBI
|
70
|
Greer JB and Whitcomb DC: Inflammation and
pancreatic cancer: An evidence-based review. Curr Opin Pharmacol.
9:411–418. 2009. View Article : Google Scholar : PubMed/NCBI
|
71
|
Hausmann S, Kong B, Michalski C, Erkan M
and Friess H: The role of inflammation in pancreatic cancer. Adv
Exp Med Biol. 816:129–151. 2014. View Article : Google Scholar : PubMed/NCBI
|
72
|
McKay CJ, Glen P and McMillan DC: Chronic
inflammation and pancreatic cancer. Best Pract Res Clin
Gastroenterol. 22:65–73. 2008. View Article : Google Scholar : PubMed/NCBI
|
73
|
Momi N, Kaur S, Krishn SR and Batra SK:
Discovering the route from inflammation to pancreatic cancer.
Minerva Gastroenterol Dietol. 58:283–297. 2012.PubMed/NCBI
|
74
|
Padoan A, Plebani M and Basso D:
Inflammation and pancreatic cancer: Focus on metabolism, cytokines,
and immunity. Int J Mol Sci. 20(pii): E6762019. View Article : Google Scholar : PubMed/NCBI
|
75
|
Shadhu K and Xi C: Inflammation and
pancreatic cancer: An updated review. Saudi J Gastroenterol.
25:3–13. 2019.PubMed/NCBI
|
76
|
Duell EJ, Casella DP, Burk RD, Kelsey KT
and Holly EA: Inflammation, genetic polymorphisms in
proinflammatory genes TNF-A, RANTES, and CCR5, and risk of
pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev.
15:726–731. 2006. View Article : Google Scholar : PubMed/NCBI
|
77
|
Dorgham K, Abadie V, Iga M, Hartley O,
Gorochov G and Combadiere B: Engineered CCR5 superagonist chemokine
as adjuvant in anti-tumor DNA vaccination. Vaccine. 26:3252–3260.
2008. View Article : Google Scholar : PubMed/NCBI
|
78
|
Song Y, Gan Y, Wang Q, Meng Z, Li G, Shen
Y, Wu Y, Li P, Yao M, Gu J and Tu H: Enriching the housing
environment for mice enhances their Nk cell antitumor immunity via
sympathetic Nerve-Dependent regulation of NKG2D and CCR5. Cancer
Res. 77:1611–1622. 2017. View Article : Google Scholar : PubMed/NCBI
|
79
|
Taub DD, Turcovski-Corrales SM, Key ML,
Longo DL and Murphy WJ: Chemokines and T lymphocyte activation: I.
Beta chemokines costimulate human T lymphocyte activation in vitro.
J Immunol. 156:2095–2103. 1996.PubMed/NCBI
|
80
|
Tan MC, Goedegebuure PS, Belt BA, Flaherty
B, Sankpal N, Gillanders WE, Eberlein TJ, Hsieh CS and Linehan DC:
Disruption of CCR5-dependent homing of regulatory T cells inhibits
tumor growth in a murine model of pancreatic cancer. J Immunol.
182:1746–1755. 2009. View Article : Google Scholar : PubMed/NCBI
|
81
|
Rubie C, Frick VO, Ghadjar P, Wagner M,
Grimm H, Vicinus B, Justinger C, Graeber S and Schilling MK:
CCL20/CCR6 expression profile in pancreatic cancer. J Transl Med.
8:452010. View Article : Google Scholar : PubMed/NCBI
|
82
|
Masai K, Iwashita Y, Tominaga M, Hirano S,
Shibata K, Matsumoto T, Sasaki A, Ohta M and Kitano S: mRNA
expression of chemokine receptors in hepatic and pancreatic tumor
cell lines. Gan To Kagaku Ryoho. 31:1261–1263. 2004.(In Japanese).
PubMed/NCBI
|
83
|
Mehta SA, Christopherson KW,
Bhat-Nakshatri P, Goulet RJ Jr, Broxmeyer HE, Kopelovich L and
Nakshatri H: Negative regulation of chemokine receptor CXCR4 by
tumor suppressor p53 in breast cancer cells: Implications of p53
mutation or isoform expression on breast cancer cell invasion.
Oncogene. 26:3329–3337. 2007. View Article : Google Scholar : PubMed/NCBI
|
84
|
Shiraishi K, Fukuda S, Mori T, Matsuda K,
Yamaguchi T, Tanikawa C, Ogawa M, Nakamura Y and Arakawa H:
Identification of fractalkine, a CX3C-type chemokine, as a direct
target of p53. Cancer Res. 60:3722–3726. 2000.PubMed/NCBI
|