Autophagy modulation in bladder cancer development and treatment (Review)
- Authors:
- Faping Li
- Hui Guo
- Yuxuan Yang
- Mingliang Feng
- Bin Liu
- Xiang Ren
- Honglan Zhou
-
Affiliations: Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China - Published online on: August 21, 2019 https://doi.org/10.3892/or.2019.7286
- Pages: 1647-1655
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Perlis N, Krahn MD, Boehme KE, Alibhai SMH, Jamal M, Finelli A, Sridhar SS, Chung P, Gandhi R, Jones J, et al: The bladder utility symptom scale: A novel patient reported outcome instrument for bladder cancer. J Urol. 200:283–291. 2018. View Article : Google Scholar : PubMed/NCBI | |
Steurer S, Singer JM, Rink M, Chun F, Dahlem R, Simon R, Burandt E, Stahl P, Terracciano L, Schlomm T, et al: MALDI imaging-based identification of prognostically relevant signals in bladder cancer using large-scale tissue microarrays. Urol Oncol. 32:1225–1233. 2014. View Article : Google Scholar : PubMed/NCBI | |
Johnson DC, Greene PS and Nielsen ME: Surgical advances in bladder cancer: At what cost? Urol Clin North Am. 42:235–252. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Hu L, Chen Y and Hou J: The prognostic value of histological subtype in patients with metastatic bladder cancer. Oncotarget. 8:28408–28417. 2017.PubMed/NCBI | |
Chandrasekar T and Evans CP: Autophagy and urothelial carcinoma of the bladder: A review. Investig Clin Urol. 57 (Suppl 1):S89–S97. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kelly JD, Tan WS, Porta N, Mostafid H, Huddart R, Protheroe A, Bogle R, Blazeby J, Palmer A, Cresswell J, et al: BOXIT-A randomised phase III placebo-controlled trial evaluating the addition of celecoxib to standard treatment of transitional cell carcinoma of the bladder (CRUK/07/004). Eur Urol. 75:593–601. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tan WS, Tan WP, Tan MY, Khetrapal P, Dong L, deWinter P, Feber A and Kelly JD: Novel urinary biomarkers for the detection of bladder cancer: A systematic review. Cancer Treat Rev. 69:39–52. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cambier S, Sylvester RJ, Collette L, Gontero P, Brausi MA, van Andel G, Kirkels WJ, Silva FC, Oosterlinck W, Prescott S, et al: EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1–3 years of maintenance bacillus calmette-guérin. Eur Urol. 69:60–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
Anderson B: Bladder cancer: Overview and management. Part 2: Muscle-invasive and metastatic bladder cancer. Br J Nurs. 27:S8–S20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Anderson B: Bladder cancer: Overview and disease management. Part 1: Non-muscle-invasive bladder cancer. Br J Nurs. 27:S27–S37. 2018. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L and Green DR: Autophagy-independent functions of the autophagy machinery. Cell. 177:1682–1699. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dower CM, Wills CA, Frisch SM and Wang HG: Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy. 14:1110–1128. 2018. View Article : Google Scholar : PubMed/NCBI | |
Long M and McWilliams TG: Monitoring autophagy in cancer: From bench to bedside. Semin Cancer Biol. Jul 15–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Zachari M, Gudmundsson SR, Li Z, Manifava M, Shah R, Smith M, Stronge J, Karanasios E, Piunti C, Kishi-Itakura C, et al: Selective autophagy of mitochondria on a ubiquitin-endoplasmic-reticulum platform. Dev Cell. 2019. View Article : Google Scholar : PubMed/NCBI | |
Apel A, Herr I, Schwarz H, Rodemann HP and Mayer A: Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 68:1485–1494. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Ren X, Hait WN and Yang JM: Therapeutic targeting of autophagy in disease: Biology and pharmacology. Pharmacol Rev. 65:1162–1197. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bishop E and Bradshaw TD: Autophagy modulation: A prudent approach in cancer treatment? Cancer Chemother Pharmacol. 82:913–922. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI | |
Mizumura K, Cloonan S, Choi ME, Hashimoto S, Nakahira K, Ryter SW and Choi AM: Autophagy: Friend or foe in lung disease? Ann Am Thorac Soc. 13 (Suppl 1):S40–S47. 2016.PubMed/NCBI | |
Jang M, Park R, Kim H, Namkoong S, Jo D, Huh YH, Jang IS, Lee JI and Park J: AMPK contributes to autophagosome maturation and lysosomal fusion. Sci Rep. 8:126372018. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee A, Patel B, Koga H, Cuervo AM and Jenny A: Selective endosomal microautophagy is starvation-inducible in Drosophila. Autophagy. 12:1984–1999. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marinković M, Šprung M, Buljubašić M and Novak I: Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid Med Cell Longev. 2018:80238212018. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, et al: Molecular definitions of autophagy and related processes. EMBO J. 36:1811–1836. 2017. View Article : Google Scholar : PubMed/NCBI | |
Taylor MA, Das BC and Ray SK: Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma. Apoptosis. 23:563–575. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Shin KD, Kim JH and Chung T: Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis. Plant Cell Rep. 37:653–664. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, et al: The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ. 16:1006–1017. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, He D, Yao Z and Klionsky DJ: The machinery of macroautophagy. Cell Res. 24:24–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Döring T, Zeyen L, Bartusch C and Prange R: Hepatitis B virus subverts the autophagy elongation complex Atg5-12/16L1 and does not require Atg8/LC3 lipidation for viral maturation. J Virol. 92:2018. View Article : Google Scholar | |
Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, Ebner M, Peterbauer T, Sztacho M, Trapannone R, Tarafder AK, et al: Phasing out the bad-How SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy. Autophagy. 14:1280–1282. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cha-Molstad H, Yu JE, Feng Z, Lee SH, Kim JG, Yang P, Han B, Sung KW, Yoo YD, Hwang J, et al: p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat Commun. 8:1022017. View Article : Google Scholar : PubMed/NCBI | |
Kwon DH, Park OH, Kim L, Jung YO, Park Y, Jeong H, Hyun J, Kim YK and Song HK: Insights into degradation mechanism of N-end rule substrates by p62/SQSTM1 autophagy adapter. Nat Commun. 9:32912018. View Article : Google Scholar : PubMed/NCBI | |
Menon MB and Dhamija S: Beclin 1 phosphorylation-at the center of autophagy regulation. Front Cell Dev Biol. 6:1372018. View Article : Google Scholar : PubMed/NCBI | |
Jung CH, Ro SH, Cao J, Otto NM and Kim DH: mTOR regulation of autophagy. FEBS Lett. 584:1287–1295. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grunwald DS, Otto NM, Park JM, Song D and Kim DH: GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction. Autophagy. 1–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ersahin T, Tuncbag N and Cetin-Atalay R: The PI3K/AKT/mTOR interactive pathway. Mol Biosyst. 11:1946–1954. 2015. View Article : Google Scholar : PubMed/NCBI | |
Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC and Manning BD: Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell. 156:771–785. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dite TA, Ling NXY, Scott JW, Hoque A, Galic S, Parker BL, Ngoei KRW, Langendorf CG, O'Brien MT, Kundu M, et al: The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Nat Commun. 8:5712017. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Pan Y, Wang S, Liu Y, Chen G, Zhou L, Ni W, Wang A and Lu Y: Cryptotanshinone activates AMPK-TSC2 axis leading to inhibition of mTORC1 signaling in cancer cells. BMC Cancer. 17:342017. View Article : Google Scholar : PubMed/NCBI | |
Findlay GM, Yan L, Procter J, Mieulet V and Lamb RF: A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J. 403:13–20. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pattingre S, Bauvy C and Codogno P: Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem. 278:16667–16674. 2003. View Article : Google Scholar : PubMed/NCBI | |
Prick T, Thumm M, Köhrer K, Häussinger D and Vom Dahl S: In yeast, loss of Hog1 leads to osmosensitivity of autophagy. Biochem J. 394:153–161. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kawauchi K, Araki K, Tobiume K and Tanaka N: p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 10:611–618. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goldstein I, Yizhak K, Madar S, Goldfinger N, Ruppin E and Rotter V: p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab. 1:92013. View Article : Google Scholar : PubMed/NCBI | |
Itahana Y and Itahana K: Emerging roles of p53 family members in glucose metabolism. Int J Mol Sci. 19:2018.PubMed/NCBI | |
Feng Z, Zhang H, Levine AJ and Jin S: The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 102:8204–8209. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dando I, Cordani M and Donadelli M: Mutant p53 and mTOR/PKM2 regulation in cancer cells. IUBMB Life. 68:722–726. 2016. View Article : Google Scholar : PubMed/NCBI | |
Budanov AV and Karin M: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 134:451–460. 2008. View Article : Google Scholar : PubMed/NCBI | |
Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T and Ryan KM: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 126:121–134. 2006. View Article : Google Scholar : PubMed/NCBI | |
Qian X, Li X, Cai Q, Zhang C, Yu Q, Jiang Y, Lee JH, Hawke D, Wang Y, Xia Y, et al: Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Mol Cell. 65:917.e6–931.e6. 2017. View Article : Google Scholar | |
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Tian Z, Li Y, Hua X, Zhang D, Li J, Jin H, Xu J, Chen W, Niu B, et al: ATG7 promotes bladder cancer invasion via autophagy-mediated increased ARHGDIB mRNA stability. Adv Sci (Weinh). 6:18019272019. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Tang J, Li P, Si S, Yu H, Yang X, Tao J, Lv Q, Gu M, Yang H and Wang Z: Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis. Cell Physiol Biochem. 45:54–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
Piya S, Andreeff M and Borthakur G: Targeting autophagy to overcome chemoresistance in acute myleogenous leukemia. Autophagy. 13:214–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schlütermann D, Skowron MA, Berleth N, Böhler P, Deitersen J, Stuhldreier F, Wallot-Hieke N, Wu W, Peter C, Hoffmann MJ, et al: Targeting urothelial carcinoma cells by combining cisplatin with a specific inhibitor of the autophagy-inducing class III PtdIns3K complex. Urol Oncol. 36:160.e1–160.e13. 2018. View Article : Google Scholar | |
Chiao MT, Cheng WY, Yang YC, Shen CC and Ko JL: Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy. 9:1509–1526. 2013. View Article : Google Scholar : PubMed/NCBI | |
Santoni M, Amantini C, Morelli MB, Liberati S, Farfariello V, Nabissi M, Bonfili L, Eleuteri AM, Mozzicafreddo M, Burattini L, et al: Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Br J Cancer. 109:1040–1050. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hua X, Xu J, Deng X, Xu J, Li J, Zhu DQ, Zhu J, Jin H, Tian Z, Huang H, et al: New compound ChlA-F induces autophagy-dependent anti-cancer effect via upregulating Sestrin-2 in human bladder cancer. Cancer Lett. 436:38–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li T, Xu K and Liu Y: Anticancer effect of salidroside reduces viability through autophagy/PI3K/Akt and MMP-9 signaling pathways in human bladder cancer cells. Oncol Lett. 16:3162–3168. 2018.PubMed/NCBI | |
Kou B, Liu W, Xu X, Yang Y, Yi Q, Guo F, Li J, Zhou J and Kou Q: Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells. Oncol Rep. 38:3137–3143. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alfred Witjes J, Lebret T, Compérat EM, Cowan NC, De Santis M, Bruins HM, Hernández V, Espinós EL, Dunn J, Rouanne M, et al: Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 71:462–475. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jamal-Hanjani M, Quezada SA, Larkin J and Swanton C: Translational implications of tumor heterogeneity. Clin Cancer Res. 21:1258–1266. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun Y: Tumor microenvironment and cancer therapy resistance. Cancer Lett. 380:205–215. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT and LLeonart ME: The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev. 49:25–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sharif T, Martell E, Dai C, Kennedy BE, Murphy P, Clements DR, Kim Y, Lee PW and Gujar SA: Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy. 13:264–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin JF, Lin YC, Tsai TF, Chen HE, Chou KY and Hwang TI: Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des Devel Ther. 11:1517–1533. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan B, Zhang X, Ma Y and Zhang A: Fangchinoline induces apoptosis, autophagy and energetic impairment in bladder cancer. Cell Physiol Biochem. 43:1003–1011. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang M, Lee KH, Lee HS, Jeong CW, Kwak C, Kim HH and Ku JH: Concurrent autophagy inhibition overcomes the resistance of epidermal growth factor receptor tyrosine kinase inhibitors in human bladder cancer cells. Int J Mol Sci. 18:2017. View Article : Google Scholar | |
Pan XW, Li L, Huang Y, Huang H, Xu DF, Gao Y, Chen L, Ren JZ, Cao JW, Hong Y and Cui XG: Icaritin acts synergistically with epirubicin to suppress bladder cancer growth through inhibition of autophagy. Oncol Rep. 35:334–342. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dyshlovoy SA, Madanchi R, Hauschild J, Otte K, Alsdorf WH, Schumacher U, Kalinin VI, Silchenko AS, Avilov SA, Honecker F, et al: The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer. 17:932017. View Article : Google Scholar : PubMed/NCBI | |
Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M and Reggiori F: Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 14:1435–1455. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thorpe LM, Yuzugullu H and Zhao JJ: PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 15:7–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Long YC and Shen HM: Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy. 11:1711–1728. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gewirtz DA: The four faces of autophagy: Implications for cancer therapy. Cancer Res. 74:647–651. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu Y, Liu W, Zhang Y, Guo F, Zhang L, Cui M, Liu S and Wu R: Ubenimex, an APN inhibitor, could serve as an anti-tumor drug in RT112 and 5637 cells by operating in an Akt-associated manner. Mol Med Rep. 17:4531–4539. 2018.PubMed/NCBI | |
Amin SA, Adhikari N and Jha T: Design of aminopeptidase N inhibitors as anti-cancer agents. J Med Chem. 61:6468–6490. 2018. View Article : Google Scholar : PubMed/NCBI | |
Torrens-Spence MP, Pluskal T, Li FS, Carballo V and Weng JK: Complete pathway elucidation and heterologous reconstitution of rhodiola salidroside biosynthesis. Mol Plant. 11:205–217. 2018. View Article : Google Scholar : PubMed/NCBI |