1
|
Goswami M, McGowan KS, Lu K, Panch SR,
Hensel NF, Battiwalla M, Barrett AJ and Hourigan CS: A novel
multi-gene expression array allows highly sensitive detection of
minimal residual disease and predicts relapse outcomes in acute
myeloid leukemia. Blood. 122:33182013.
|
2
|
Rauscher FJ III: The WT1 Wilms tumor gene
product: A developmentally regulated transcription factor in the
kidney that functions as a tumor suppressor. FASEB J. 7:896–903.
1993. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang R, Morosetti R and Koeffler HP:
Characterization of a second human cyclin A that is highly
expressed in testis and in several leukemic cell lines. Cancer Res.
57:913–920. 1997.PubMed/NCBI
|
4
|
Stirewalt DL, Meshinchi S, Kopecky KJ, Fan
W, Pogosova-Agadjanyan EL, Engel JH, Cronk MR, Dorcy KS, McQuary
AR, Hockenbery D, et al: Identification of genes with abnormal
expression changes in acute myeloid leukemia. Genes Chromosomes
Cancer. 47:8–20. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hollink IH, van den Heuvel-Eibrink MM,
Zimmermann M, Balgobind BV, Arentsen-Peters ST, Alders M, Willasch
A, Kaspers GJ, Trka J, Baruchel A, et al: Clinical relevance of
Wilms tumor 1 gene mutations in childhood acute myeloid leukemia.
Blood. 113:5951–5960. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ekberg J, Holm C, Jalili S, Richter J,
Anagnostaki L, Landberg G and Persson JL: Expression of cyclin A1
and cell cycle proteins in hematopoietic cells and acute myeloid
leukemia and links to patient outcome. Eur J Haematol. 75:106–115.
2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Anguille S, Van Tendeloo VF and Berneman
ZN: Leukemia-associated antigens and their relevance to the
immunotherapy of acute myeloid leukemia. Leukemia. 26:2186–2196.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Goswami M, Hensel N, Smith BD, Prince GT,
Qin L, Levitsky HI, Strickland SA, Jagasia M, Savani BN, Fraser JW,
et al: Expression of putative targets of immunotherapy in acute
myeloid leukemia and healthy tissues. Leukemia. 28:1167–1170. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Steinbach D, Schramm A, Eggert A, Onda M,
Dawczynski K, Rump A, Pastan I, Wittig S, Pfaffendorf N, Voigt A,
et al: Identification of a set of seven genes for the monitoring of
minimal residual disease in pediatric acute myeloid leukemia. Clin
Cancer Res. 12:2434–2441. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Goswami M, McGowan KS, Lu K, Jain NA,
Candia J, Hensel NF, Tang J, Calvo KR, Battiwalla M, Barrett AJ and
Hourigan CS: A novel multi-gene array allows relapse risk
stratification in acute myeloid leukemia patients undergoing stem
cell transplantation. Blood. 124:6672014.
|
11
|
Holm C, Ora I, Brunhoff C, Anagnostaki L,
Landberg G and Persson JL: Cyclin A1 expression and associations
with disease characteristics in childhood acute lymphoblastic
leukemia. Leuk Res. 30:254–261. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Brett A, Pandey S and Fraizer G: The
Wilms' tumor gene (WT1) regulates E-cadherin expression and
migration of prostate cancer cells. Mol Cancer. 12:32013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hanson J, Gorman J, Reese J and Fraizer G:
Regulation of vascular endothelial growth factor, VEGF, gene
promoter by the tumor suppressor, WT1. Front Biosci. 12:2279–2290.
2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
McCarty G, Awad O and Loeb DM: WT1 protein
directly regulates expression of vascular endothelial growth factor
and is a mediator of tumor response to hypoxia. J Biol Chem.
286:43634–43643. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Morrison AA, Viney RL and Ladomery MR: The
post-transcriptional roles of WT1, a multifunctional zinc-finger
protein. Biochim Biophys Acta. 1785:55–62. 2008.PubMed/NCBI
|
16
|
Xu C, Wu C, Xia Y, Zhong Z, Liu X, Xu J,
Cui F, Chen B, Røe OD, Li A and Chen Y: WT1 promotes cell
proliferation in non-small cell lung cancer cell lines through
up-regulating cyclin D1 and p-pRb in vitro and in vivo. PLoS One.
8:e688372013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Loeb DM, Korz D, Katsnelson M, Burwell EA,
Friedman AD and Sukumar S: Cyclin E is a target of WT1
transcriptional repression. J Biol Chem. 277:19627–19632. 2002.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Krug U, Yasmeen A, Beger C, Baumer N,
Dugas M, Berdel WE and Müller-Tidow C: Cyclin A1 regulates WT1
expression in acute myeloid leukemia cells. Int J Oncol.
34:129–136. 2009.PubMed/NCBI
|
19
|
Liu D, Matzuk MM, Sung WK, Guo Q, Wang P
and Wolgemuth DJ: Cyclin A1 is required for meiosis in the male
mouse. Nat Genet. 20:377–380. 1998. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Miftakhova R, Hedblom A, Batkiewicz L,
Anagnosaki L, Zhang Y, Sjölander A, Wingren AG, Wolgemuth DJ and
Persson JL: Cyclin A1 regulates the interactions between mouse
haematopoietic stem and progenitor cells and their niches. Cell
Cycle. 14:1948–1960. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ji P, Agrawal S, Diederichs S, Bäumer N,
Becker A, Cauvet T, Kowski S, Beger C, Welte K, Berdel WE, et al:
Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell
cycle progression in somatic cells. Oncogene. 24:2739–2744. 2005.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang R, Müller C, Huynh V, Fung YK, Yee AS
and Koeffler HP: Functions of cyclin A1 in the cell cycle and its
interactions with transcription factor E2F-1 and the Rb family of
proteins. Mol Cell Biol. 19:2400–2407. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jang SW, Yang S, Ehlén A, Dong S, Khoury
H, Chen J, Persson JL and Ye K: Serine/arginine protein-specific
kinase 2 promotes leukemia cell proliferation by phosphorylating
acinus and regulating cyclin A1. Cancer Res. 68:4559–4570. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Coletta RD, Christensen K, Reichenberger
KJ, Lamb J, Micomonaco D, Huang L, Wolf DM, Müller-Tidow C, Golub
TR, Kawakami K and Ford HL: The Six1 homeoprotein stimulates
tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci USA.
101:6478–6483. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yamagami T, Sugiyama H, Inoue K, Ogawa H,
Tatekawa T, Hirata M, Kudoh T, Akiyama T, Murakami A and Maekawa T:
Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene)
antisense oligodeoxynucleotides: Implications for the involvement
of WT1 in leukemogenesis. Blood. 87:2878–2884. 1996.PubMed/NCBI
|
26
|
Glienke W, Maute L, Koehl U, Esser R, Milz
E and Bergmann L: Effective treatment of leukemic cell lines with
wt1 siRNA. Leukemia. 21:2164–2170. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wegiel B, Bjartell A, Ekberg J, Gadaleanu
V, Brunhoff C and Persson JL: A role for cyclin A1 in mediating the
autocrine expression of vascular endothelial growth factor in
prostate cancer. Oncogene. 24:6385–6393. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wegiel B, Bjartell A, Culig Z and Persson
JL: Interleukin-6 activates PI3K/Akt pathway and regulates cyclin
A1 to promote prostate cancer cell survival. Int J Cancer.
122:1521–1529. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Syed Khaja AS, Dizeyi N, Kopparapu PK,
Anagnostaki L, Härkönen P and Persson JL: Cyclin A1 modulates the
expression of vascular endothelial growth factor and promotes
hormone-dependent growth and angiogenesis of breast cancer. PLoS
One. 8:e722102013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wegiel B, Bjartell A, Tuomela J, Dizeyi N,
Tinzl M, Helczynski L, Nilsson E, Otterbein LE, Härkönen P and
Persson JL: Multiple cellular mechanisms related to cyclin A1 in
prostate cancer invasion and metastasis. J Natl Cancer Inst.
100:1022–1036. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gregg J, Brown K, Mintz E, Piontkivska H
and Fraizer G: Analysis of gene expression in prostate cancer
epithelial and interstitial stromal cells using laser capture
microdissection. BMC Cancer. 10:1652010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Haferlach T, Kohlmann A, Wieczorek L,
Basso G, Kronnie GT, Béné MC, De Vos J, Hernández JM, Hofmann WK,
Mills KI, et al: Clinical utility of microarray-based gene
expression profiling in the diagnosis and subclassification of
leukemia: Report from the International Microarray Innovations In
Leukemia Study Group. J Clin Oncol. 28:2529–2537. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Madden SL, Cook DM, Morris JF, Gashler A,
Sukhatme VP and Rauscher FJ III: Transcriptional repression
mediated by the WT1 Wilms tumor gene product. Science.
253:1550–1553. 1991. View Article : Google Scholar : PubMed/NCBI
|
35
|
King-Underwood L, Renshaw J and
Pritchard-Jones K: Mutations in the Wilms' tumor gene WT1 in
leukemias. Blood. 87:2171–2179. 1996.PubMed/NCBI
|
36
|
Ho PA, Zeng R, Alonzo TA, Gerbing RB,
Miller KL, Pollard JA, Stirewalt DL, Heerema NA, Raimondi SC,
Hirsch B, et al: Prevalence and prognostic implications of WT1
mutations in pediatric acute myeloid leukemia (AML): A report from
the Children's Oncology Group. Blood. 116:702–710. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Anuchapreeda S, Thanarattanakorn P,
Sittipreechacharn S, Chanarat P and Limtrakul P: Curcumin inhibits
WT1 gene expression in human leukemic K562 cells. Acta Pharmacol
Sin. 27:360–366. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cilloni D, Renneville A, Hermitte F, Hills
RK, Daly S, Jovanovic JV, Gottardi E, Fava M, Schnittger S, Weiss
T, et al: Real-time quantitative polymerase chain reaction
detection of minimal residual disease by standardized WT1 assay to
enhance risk stratification in acute myeloid leukemia: A European
LeukemiaNet study. J Clin Oncol. 27:5195–5201. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dores GM, Devesa SS, Curtis RE, Linet MS
and Morton LM: Acute leukemia incidence and patient survival among
children and adults in the United States, 2001–2007. Blood.
119:34–43. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Boublikova L, Kalinova M, Ryan J, Quinn F,
O'Marcaigh A, Smith O, Browne P, Stary J, McCann SR, Trka J and
Lawler M: Wilms' tumor gene 1 (WT1) expression in childhood acute
lymphoblastic leukemia: A wide range of WT1 expression levels, its
impact on prognosis and minimal residual disease monitoring.
Leukemia. 20:254–263. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cilloni D, Gottardi E, De Micheli D, Serra
A, Volpe G, Messa F, Rege-Cambrin G, Guerrasio A, Divona M, Lo Coco
F and Saglio G: Quantitative assessment of WT1 expression by real
time quantitative PCR may be a useful tool for monitoring minimal
residual disease in acute leukemia patients. Leukemia.
16:2115–2121. 2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang R, Nakamaki T, Lübbert M, Said J,
Sakashita A, Freyaldenhoven BS, Spira S, Huynh V, Müller C and
Koeffler HP: Cyclin A1 expression in leukemia and normal
hematopoietic cells. Blood. 93:2067–2074. 1999.PubMed/NCBI
|
43
|
Kramer A, Hochhaus A, Saussele S, Reichert
A, Willer A and Hehlmann R: Cyclin A1 is predominantly expressed in
hematological malignancies with myeloid differentiation. Leukemia.
12:893–898. 1998. View Article : Google Scholar : PubMed/NCBI
|
44
|
Busse A, Gökbuget N, Siehl JM, Hoelzer D,
Schwartz S, Rietz A, Thiel E and Keilholz U: Wilms' tumor gene 1
(WT1) expression in subtypes of acute lymphoblastic leukemia (ALL)
of adults and impact on clinical outcome. Ann Hematol.
88:1199–1205. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Loeb DM and Sukumar S: The role of WT1 in
oncogenesis: Tumor suppressor or oncogene? Int J Hematol.
76:117–126. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Anuchapreeda S, Limtrakul P,
Thanarattanakorn P, Sittipreechacharn S and Chanarat P: Inhibitory
effect of curcumin on WT1 gene expression in patient leukemic
cells. Arch Pharm Res. 29:80–87. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Glienke W, Maute L, Wicht J and Bergmann
L: Wilms' tumour gene 1 (WT1) as a target in curcumin treatment of
pancreatic cancer cells. Eur J Cancer. 45:874–880. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kunnumakkara AB, Anand P and Aggarwal BB:
Curcumin inhibits proliferation, invasion, angiogenesis and
metastasis of different cancers through interaction with multiple
cell signaling proteins. Cancer Lett. 269:199–225. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Müller C, Yang R, Beck-von-Peccoz L, Idos
G, Verbeek W and Koeffler HP: Cloning of the cyclin A1 genomic
structure and characterization of the promoter region. GC boxes are
essential for cell cycle-regulated transcription of the cyclin A1
gene. J Biol Chem. 274:11220–11228. 1999. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kadonaga JT, Carner KR, Masiarz FR and
Tjian R: Isolation of cDNA encoding transcription factor Sp1 and
functional analysis of the DNA binding domain. Cell. 51:1079–1090.
1987. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang ZY, Madden SL, Deuel TF and Rauscher
FJ III: The Wilms' tumor gene product, WT1, represses transcription
of the platelet-derived growth factor A-chain gene. J Biol Chem.
267:21999–22002. 1992.PubMed/NCBI
|
52
|
Eisermann K, Tandon S, Bazarov A, Brett A,
Fraizer G and Piontkivska H: Evolutionary conservation of zinc
finger transcription factor binding sites in promoters of genes
co-expressed with WT1 in prostate cancer. BMC Genomics. 9:3372008.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Rauscher FJ III, Morris JF, Tournay OE,
Cook DM and Curran T: Binding of the Wilms' tumor locus zinc finger
protein to the EGR-1 consensus sequence. Science. 250:1259–1262.
1990. View Article : Google Scholar : PubMed/NCBI
|
54
|
Miller DM, Polansky DA, Thomas SD, Ray R,
Campbell VW, Sanchez J and Koller CA: Mithramycin selectively
inhibits transcription of G-C containing DNA. Am J Med Sci.
294:388–394. 1987. View Article : Google Scholar : PubMed/NCBI
|
55
|
Lyu CJ, Rha SY and Won SC: Clinical role
of bone marrow angiogenesis in childhood acute lymphocytic
leukemia. Yonsei Med J. 48:171–175. 2007. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yetgin S, Yenicesu I, Icletin M and Tuncer
M: Clinical importance of serum vascular endothelial and basic
fibroblast growth factors in children with acute lymphoblastic
leukemia. Leuk Lymphoma. 42:83–88. 2001. View Article : Google Scholar : PubMed/NCBI
|
57
|
Koomagi R, Zintl F, Sauerbrey A and Volm
M: Vascular endothelial growth factor in newly diagnosed and
recurrent childhood acute lymphoblastic leukemia as measured by
real-time quantitative polymerase chain reaction. Clin Cancer Res.
7:3381–3384. 2001.PubMed/NCBI
|