1
|
DeSantis C, Ma J, Bryan L and Jemal A:
Breast cancer statistics, 2013. CA Cancer J Clin. 64:52–62. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Alkabban FM and Ferguson T: Cancer,
breastStatPearls. Treasure; Island (FL): 2019
|
3
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guan X, Liu Z, Zhao Z, Zhang X, Tao S,
Yuan B, Zhang J, Wang D, Liu Q and Ding Y: Emerging roles of
low-density lipoprotein in the development and treatment of breast
cancer. Lipids Health Dis. 18:1372019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Parise CA and Caggiano V: Risk of
mortality of node-negative, ER/PR/HER2 breast cancer subtypes in
T1, T2, and T3 tumors. Breast Cancer Res Treat. 165:743–750. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Dent R, Trudeau M, Pritchard KI, Hanna WM,
Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA:
Triple-negative breast cancer: Clinical features and patterns of
recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Santuario-Facio SK, Cardona-Huerta S,
Perez-Paramo YX, Trevino V, Hernandez-Cabrera F, Rojas-Martinez A,
Uscanga-Perales G, Martinez-Rodriguez JL, Martinez-Jacobo L,
Padilla-Rivas G, et al: A new gene expression signature for triple
negative Breast cancer using frozen fresh tissue before neoadjuvant
chemotherapy. Mol Med. 23:101–111. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Clague MJ and Lorenzo O: The myotubularin
family of lipid phosphatases. Traffic. 6:1063–1069. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lorenzo O, Urbé S and Clague MJ: Analysis
of phosphoinositide binding domain properties within the
myotubularin-related protein MTMR3. J Cell Sci. 118:2005–2012.
2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Clarke JH, Letcher AJ, D'Santos C S,
Halstead JR, Irvine RF and Divecha N: Inositol lipids are regulated
during cell cycle progression in the nuclei of murine
erythroleukaemia cells. Biochem J. 357:905–910. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lin Y, Zhao J, Wang H, Cao J and Nie Y:
miR-181a modulates proliferation, migration and autophagy in AGS
gastric cancer cells and downregulates MTMR3. Mol Med Rep.
15:2451–2456. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zheng B, Yu X and Chai R:
Myotubularin-related phosphatase 3 promotes growth of colorectal
cancer cells. ScientificWorldJournal. 2014:7038042014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Oppelt A, Haugsten EM, Zech T, Danielsen
HE, Sveen A, Lobert VH, Skotheim RI and Wesche J: PIKfyve, MTMR3
and their product PtdIns5P regulate cancer cell migration and
invasion through activation of Rac1. Biochem J. 461:383–390. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kuo YZ, Tai YH, Lo HI, Chen YL, Cheng HC,
Fang WY, Lin SH, Yang CL, Tsai ST and Wu LW: MiR-99a exerts
anti-metastasis through inhibiting myotubularin-related protein 3
expression in oral cancer. Oral Dis. 20:e65–e75. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gong Y, He T, Yang L, Yang G, Chen Y and
Zhang X: The role of miR-100 in regulating apoptosis of breast
cancer cells. Sci Rep. 5:116502015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kuma A, Matsui M and Mizushima N: LC3, an
autophagosome marker, can be incorporated into protein aggregates
independent of autophagy: Caution in the interpretation of LC3
localization. Autophagy. 3:323–328. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang ZJ, Chee CE, Huang S and Sinicrope
FA: The role of autophagy in cancer: Therapeutic implications. Mol
Cancer Ther. 10:1533–1541. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Taguchi-Atarashi N, Hamasaki M, Matsunaga
K, Omori H, Ktistakis NT, Yoshimori T and Noda T: Modulation of
local PtdIns3P levels by the PI phosphatase MTMR3 regulates
constitutive autophagy. Traffic. 11:468–478. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou W, Guan X, Wang L, Liao Y and Huang
J: p12(CDK2-AP1) inhibits breast cancer cell proliferation and in
vivo tumor growth. J Cancer Res Clin Oncol. 138:2085–2093. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yoshikawa D, Ojima H, Iwasaki M, Hiraoka
N, Kosuge T, Kasai S, Hirohashi S and Shibata T:
Clinicopathological and prognostic significance of EGFR, VEGF, and
HER2 expression in cholangiocarcinoma. Br J Cancer. 98:418–425.
2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang Z, Chen J, Zhong MZ, Huang J, Hu YP,
Feng DY, Zhou ZJ, Luo X, Liu ZQ, Jiang WZ and Zhou W:
Overexpression of ANLN contributed to poor prognosis of
anthracycline-based chemotherapy in breast cancer patients. Cancer
Chemother Pharmacol. 79:535–543. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou W, Wang Z, Shen N, Pi W, Jiang W,
Huang J, Hu Y, Li X and Sun L: Knockdown of ANLN by lentivirus
inhibits cell growth and migration in human breast cancer. Mol Cell
Biochem. 398:11–19. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ma D, Fang Q, Li Y, Wang J, Sun J, Zhang
Y, Hu X, Wang P and Zhou S: Crucial role of heme oxygenase-1 in the
sensitivity of acute myeloid leukemia cell line Kasumi-1 to ursolic
acid. Anticancer Drugs. 25:406–414. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Swart C, Du TA and Loos B: Autophagy and
the invisible line between life and death. Eur J Cell Biol.
95:598–610. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Odle TG: Precision medicine in breast
cancer. Radiol Technol. 88:M401–M421. 2017.
|
28
|
Weaver O and Leung JWT: Biomarkers and
imaging of breast cancer. AJR Am J Roentgenol. 210:271–278. 2018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Yoo YD, Cho SM, Kim JS, Chang YS, Ahn CM
and Kim HJ: The human myotubularin-related protein suppresses the
growth of lung carcinoma cells. Oncol Rep. 12:667–671.
2004.PubMed/NCBI
|
30
|
Wang YC, Yang X, Xing LH and Kong WZ:
Effects of SAHA on proliferation and apoptosis of hepatocellular
carcinoma cells and hepatitis B virus replication. World J
Gastroenterol. 19:5159–5164. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gartel AL, Serfas MS and Tyner AL:
p21-negative regulator of the cell cycle. Proc Soc Exp Biol Med.
213:138–149. 1996. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tan Y, Sun D, Jiang W, Klotz-Noack K,
Vashisht AA, Wohlschlegel J, Widschwendter M and Spruck C:
PP2A-B55β antagonizes cyclin E1 proteolysis and promotes its
dysregulation in cancer. Cancer Res. 74:2006–2014. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chang MW, Barr E, Lu MM, Barton K and
Leiden JM: Adenovirus-mediated over-expression of the
cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular
smooth muscle cell proliferation and neointima formation in the rat
carotid artery model of balloon angioplasty. J Clin Invest.
96:2260–2268. 1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lim D, Jocelyn KM, Yip GW and Bay BH:
Silencing the Metallothionein-2A gene inhibits cell cycle
progression from G1- to S-phase involving ATM and cdc25A signaling
in breast cancer cells. Cancer Lett. 276:109–117. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ofir M, Hacohen D and Ginsberg D: MiR-15
and miR-16 are direct transcriptional targets of E2F1 that limit
E2F-induced proliferation by targeting cyclin E. Mol Cancer Res.
9:440–447. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang H, Iakova P, Wilde M, Welm A, Goode
T, Roesler WJ and Timchenko NA: C/EBPalpha arrests cell
proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell.
8:817–828. 2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dobashi Y, Shoji M, Jiang SX, Kobayashi M,
Kawakubo Y and Kameya T: Active cyclin A-CDK2 complex, a possible
critical factor for cell proliferation in human primary lung
carcinomas. Am J Pathol. 153:963–972. 1998. View Article : Google Scholar : PubMed/NCBI
|
38
|
Grander D and Panaretakis T: Autophagy:
Cancer therapy's friend or foe? Future Med Chem. 2:285–297. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Duan X, Chen B, Cui Y, Zhou L, Wu C, Yang
Z, Wen Y, Miao X, Li Q, Xiong L and He J: Ready player one?
Autophagy shapes resistance to photodynamic therapy in cancers.
Apoptosis. 23:587–606. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Xu Z, Yan Y, Zeng S, Qian L, Dai S, Xiao
L, Wang L, Yang X, Xiao Y and Gong Z: Reducing autophagy and
inducing G1 phase arrest by aloperine enhances radio-sensitivity in
lung cancer cells. Oncol Rep. Jun 19–2017.(Epub ahead of print)
doi: 10.3892/or.2017.5732. View Article : Google Scholar
|
41
|
Mathew R, Karantza-Wadsworth V and White
E: Role of autophagy in cancer. Nature reviews Cancer. 7:961–967.
2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Roberts R and Ktistakis NT: Omegasomes:
PI3P platforms that manufacture autophagosomes. Essays Biochem.
55:17–27. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fernández-Araujo A, Sánchez JA, Alfonso A,
Vieytes MR and Botana LM: Different toxic effects of YTX in tumor
K-562 and lymphoblastoid cell lines. Front Pharmacol. 6:1242015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Lamark T, Svenning S and Johansen T:
Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays
Biochem. 61:609–624. 2017. View Article : Google Scholar : PubMed/NCBI
|