Cytotoxicity of Cichorium intybus L. metabolites (Review)
- Authors:
- Khandaker Md Sharif Uddin Imam
- Yingying Xie
- Yusi Liu
- Fengzhong Wang
- Fengjiao Xin
-
Affiliations: Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China - Published online on: September 24, 2019 https://doi.org/10.3892/or.2019.7336
- Pages: 2196-2212
This article is mentioned in:
Abstract
Al-Snafi AE: Medical importance of Cichorium intybus-A review. IOSR J Of Pharm. 6:41–56. 2016. | |
Bais HP and Ravishankar GA: Cichorium intybus L- cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects. J Sci Food Agric. 81:467–484. 2001. View Article : Google Scholar | |
Street RA, Sidana J and Prinsloo G: Cichorium intybus: Traditional uses, phytochemistry, pharmacology, and toxicology. Evid Based Complement Alternat Med. 2013:5793192013. View Article : Google Scholar : PubMed/NCBI | |
Roberfroid MB: Inulin-type fructans: Functional food ingredients. J Nutr. 137 (Suppl 11):S2493–S2502. 2007. View Article : Google Scholar | |
Carazzone C, Mascherpa D, Gazzani G and Papetti A: Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 138:1062–1071. 2013. View Article : Google Scholar : PubMed/NCBI | |
Malik B, Pirzadah TB, Tahir I and Rehman RU: Chemo-profiling, antioxidant potential and ionomic analysis of Cichorium intybus L. Pharmacogn J. 9:917–928. 2017. View Article : Google Scholar | |
Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB: Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liou GY and Storz P: Reactive oxygen species in cancer. Free Radic Res. 44:479–496. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moloney JN and Cotter TG: ROS signalling in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang H, Zhou HJ, Ji W and Min W: Mitochondrial redox signaling and tumor progression. Cancers (Basel). 8:402016. View Article : Google Scholar : | |
Saikolappan S, Kumar B, Shishodia G, Koul S and Koul HK: Reactive oxygen species and cancer: A complex interaction. Cancer Lett. 452:132–143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Conforti F, Ioele G, Statti GA, Marrelli M, Ragno G and Menichini F: Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food Chem Toxicol. 46:3325–3332. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hafez ESE, Badr EA, Mabrouk YM, Seehy MA and Aggag SA: Expression of tumor-markers and cytokines in response to Cichorium endivia L. in cancerous mice. Int J Life Sci Biotech Pharma Res. 3:1–7. 2014. | |
Alshehri A and Elsayed HE: Molecular and biochemical evaluation of anti-proliferative effect of (Cichorium endivia L.) phenolic extracts on breast cancer cell line: MCF7. J Biotechnol Pharma Res. 3:74–82. 2012. | |
Hafez EE, Badr E, Mabrouk Y, El-Seehy M and Aggag S: Molecular genetic evaluation of Cichorium endivia L. as an anticancer agent against colorectal cancer. Int J Phytomed. 8:551–557. 2016. View Article : Google Scholar | |
Hazra B, Sarkar R, Bhattacharyya S and Roy P: Tumour inhibitory activity of chicory root extract against Ehrlich ascites carcinoma in mice. Fitoterapia. 73:730–733. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nawab A, Yunus M, Mahdi AA and Gupta S: Evaluation of anticancer properties of medicinal plants from the Indiansub-continent. Mol Cell Pharmacol. 3:21–29. 2011. | |
Mehrandish R, Awsat Mellati A, Rahimipour A and Dehghan Nayeri N: Anti-cancer activity of methanol extracts of Cichorium intybus on human breast cancer SKBR3 cell line. Razavi Int J Med. 5:e383692017. | |
Saleem M, Abbas K, Naseer F, Mobasher A, Syed NH, Fatima J, Hussain K and Samia A: Anticancer activity of n-hexane extract of Cichorium intybus on lymphoblastic leukemia cells (Jurkat cells). Asian J Plant Sci. 8:315–319. 2014. | |
Esmaeilbeig M, Kouhpayeh SA and Amirghofran Z: An investigation of the growth inhibitory capacity of several medicinal plants from Iran on tumor cell lines. Iran J Cancer Prev. 8:e40322015. View Article : Google Scholar : PubMed/NCBI | |
Leclercq E: Determination of lactucin in roots of chicory (Cichorium intybus L.) by high-performance liquid chromatography. J Chromatogr A. 283:441–444. 1984. View Article : Google Scholar | |
Bischoff TA, Kelley CJ, Karchesy Y, Laurantos M, Nguyen-Dinh P and Arefi AG: Antimalarial activity of lactucin and lactucopicrin: Sesquiterpene lactones isolated from Cichorium intybus L. J Ethnopharmacol. 95:455–457. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kisiel W and Zielińska K: Guaianolides from Cichorium intybus and structure revision of Cichorium sesquiterpene lactones. Phytochemistry. 57:523–527. 2001. View Article : Google Scholar : PubMed/NCBI | |
Malarz J, Stojakowska A, Szneler E and Kisiel W: A new neolignan glucoside from hairy roots of Cichorium intybus. Phytochem Lett. 6:59–61. 2013. View Article : Google Scholar | |
Pyrek JS: Sesquiterpene lactones of Cichorium intybus and Leontodon autumnalis. Phytochemistry. 24:186–188. 1985. View Article : Google Scholar | |
Satmbekova D, Srivedavyasasri R, Orazbekov Y, Omarova R, Datkhayev U and Ross SA: Chemical and biological studies on Cichorium intybus L. Nat Prod Res. 32:1343–1347. 2018. View Article : Google Scholar : PubMed/NCBI | |
Van Beek TA, Maas P, King BM, Leclercq E, Voragen AGJ and De Groot A: Bitter sesquiterpene lactones from chicory roots. J Agric Food Chem. 38:1035–1038. 1990. View Article : Google Scholar | |
Nwafor IC, Shale K and Achilonu MC: Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. ScientificWorldJournal. 2017:73439282017. View Article : Google Scholar : PubMed/NCBI | |
Aisa HA and Xue-Lei X: Cichorium glandulosum Bioss. Et Huet (Juju, Chicory)Dietary Chinese Herbs. Springer, Vienna Pharmacology and Clinical Evidence; pp. 711–720. 2015, View Article : Google Scholar | |
Malarz J, Stojakowska A and Kisiel W: Long-term cultured hairy roots of chicory-a rich source of hydroxycinnamates and 8-deoxylactucin glucoside. Appl Biochem Biotechnol. 171:1589–1601. 2013. View Article : Google Scholar : PubMed/NCBI | |
Malarz J, Stojakowska A and Kisiel W: Sesquiterpene lactones in a hairy root culture of Cichorium intybus. Z Naturforsch C. 57:994–997. 2002. View Article : Google Scholar : PubMed/NCBI | |
Monde K, Oya T, Takasugi M and Shirata A: A guaianolide phytoalexin, cichoralexin, from Cichorium intybus. Phytochemistry. 29:3449–3451. 1990. View Article : Google Scholar | |
Seto M, Miyase T, Umehara K, Ueno A, Hirano Y and Otani N: Sesquiterpene lactones from Cichorium endivia L. and C. intybus L. and cytotoxic activity. Chem Pharm Bull (Tokyo). 36:2423–2429. 1988. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhao M, Bai L, Hasegawa T, Wang J, Wang L, Xue H, Deng Q, Xing F, Bai Y, et al: Bioactive guaianolides from siyekucai (Ixeris chinensis). J Nat Prod. 69:1425–1428. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Zhou Y, Chen X and Ye Y: Discovery, structural determination and anticancer activities of Lactucin like guaianolides. Lett Drug Des Discov. 2:444–450. 2005. View Article : Google Scholar | |
Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA and Darwiche N: What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today. 15:668–678. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rüngeler P, Castro V, Mora G, Gören N, Vichnewski W, Pahl HL, Merfort I and Schmidt TJ: Inhibition of transcription factor NF-kappaB by sesquiterpene lactones: A proposed molecular mechanism of action. Bioorg Med Chem. 7:2343–2352. 1999. View Article : Google Scholar : PubMed/NCBI | |
García-Piñeres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL and Merfort I: Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem. 276:39713–39720. 2001. View Article : Google Scholar : PubMed/NCBI | |
Krebsky EO, Geuns JMC and De Proft M: Polyamines and sterols in Cichorium heads. Phytochemistry. 50:549–553. 1999. View Article : Google Scholar | |
Papetti A, Mascherpa D, Carazzone C, Stauder M, Spratt DA, Wilson M, Pratten J, Ciric L, Lingström P, Zaura E, et al: Identification of organic acids in Cichorium intybus inhibiting virulence-related properties of oral pathogenic bacteria. Food Chem. 138:1706–1712. 2013. View Article : Google Scholar : PubMed/NCBI | |
Amendola R, Cervelli M, Fratini E, Polticelli F, Sallustio DE and Mariottini P: Spermine metabolism and anticancer therapy. Curr Cancer Drug Targets. 9:118–130. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng B, Bux R and Cheng D: Spermidine/spermine N1-acetyltransferase antibodies as anti-cancer drug compounds. US Patent 2016/0017054 A1. Filed January 30 2014; issued January 21 2016. | |
Kremmer T, Pälyi I, Daubner D, Boldizsár M, Vincze B, Paulik E, Sugár J, Pokorny E and Túry E: Comparative studies on the polyamine metabolism and DFMO treatment of MCF-7 and MDA-MB-231 breast cancer cell lines and xenografts. Anticancer Res. 11:1807–1813. 1991.PubMed/NCBI | |
Lima G and Shiu RP: Role of polyamines in estradiol-induced growth of human breast cancer cells. Cancer Res. 45:2466–2470. 1985.PubMed/NCBI | |
Pályi I, Kremmer T, Kálnay A, Turi G, Mihalik R, Bencsik K and Boldizsár M: Effects of methylacetylenic putrescine, an ornithine decarboxylase inhibitor and potential novel anticancer agent, on human and mouse cancer cell lines. Anticancer Drugs. 10:103–111. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kinjo J, Nakano D, Fujioka T and Okabe H: Screening of promising chemotherapeutic candidates from plants extracts. J Nat Med. 70:335–360. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lessard M, Zhao C, Singh SM and Poulin R: Hormonal and feedback regulation of putrescine and spermidine transport in human breast cancer cells. J Biol Chem. 270:1685–1694. 1995. View Article : Google Scholar : PubMed/NCBI | |
Pegg AE and McCann PP: Polyamine metabolism and function. Am J Physiol. 243:C212–C221. 1982. View Article : Google Scholar : PubMed/NCBI | |
Thomas T and Thomas TJ: Polyamines in cell growth and cell death: Molecular mechanisms and therapeutic applications. Cell Mol Life Sci. 58:244–258. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bridle P, Thomas Loeffler RS, Timberlake CF and Self R: Cyanidin 3-malonylglucoside in Cichorium intybus. Phytochemistry. 23:2968–2969. 1984. View Article : Google Scholar | |
Tousch D, Lajoix AD, Hosy E, Azay-Milhau J, Ferrare K, Jahannault C, Cros G and Petit P: Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun. 377:131–135. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nørbaek R, Nielsen K and Kondo T: Anthocyanins from flowers of Cichorium intybus. Phytochemistry. 60:357–359. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kurata R, Adachi M, Yamakawa O and Yoshimoto M: Growth suppression of human cancer cells by polyphenolics from sweetpotato (Ipomoea batatas L.) leaves. J Agric Food Chem. 55:185–190. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, Shiao MS, Hsu ML, Tsai TH and Wang SY: Effect of caffeic acid phenethyl ester, an antioxidant from propolis, on inducing apoptosis in human leukemic HL-60 cells. J Agric Food Chem. 49:5615–5619. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A, Bakogeorgou E, Kouimtzoglou E, Blekas G, Boskou D, et al: Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res. 6:R63–R74. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dilshara MG, Jayasooriya RG, Park SR, Choi YH, Choi IW and Kim GY: Caffeic acid phenethyl ester enhances TRAIL-mediated apoptosis via CHOP-induced death receptor 5 upregulation in hepatocarcinoma Hep3B cells. Mol Cell Biochem. 418:13–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
Búfalo MC, Ferreira I, Costa G, Francisco V, Liberal J, Cruz MT, Lopes MC, Batista MT and Sforcin JM: Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages. J Ethnopharmacol. 149:84–92. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang MT, Smart RC, Wong CQ and Conney AH: Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48:5941–5946. 1988.PubMed/NCBI | |
Kasai H, Fukada S, Yamaizumi Z, Sugie S and Mori H: Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem Toxicol. 38:467–471. 2000. View Article : Google Scholar : PubMed/NCBI | |
Feng R, Lu Y, Bowman LL, Qian Y, Castranova V and Ding M: Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 280:27888–27895. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, Li Z, Zhu FH, He PL, Tang W, et al: Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 83:186–190. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hsu CL, Huang SL and Yen GC: Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity. J Agric Food Chem. 54:4191–4197. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maki C, Funakoshi-Tago M, Aoyagi R, Ueda F, Kimura M, Kobata K, Tago K and Tamura H: Coffee extract inhibits adipogenesis in 3T3-L1 preadipocyes by interrupting insulin signaling through the downregulation of IRS1. PLoS One. 12:e01732642017. View Article : Google Scholar : PubMed/NCBI | |
Meng S, Cao J, Feng Q, Peng J and Hu Y: Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid Based Complement Alternat Med. 2013:8014572013. View Article : Google Scholar : PubMed/NCBI | |
Olthof MR, Hollman PCH and Katan MB: Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr. 131:66–71. 2001. View Article : Google Scholar : PubMed/NCBI | |
In JK, Kim JK, Oh JS and Seo DW: 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways. Int J Oncol. 48:1907–1912. 2016. View Article : Google Scholar : PubMed/NCBI | |
Apostolou A, Stagos D, Galitsiou E, Spyrou A, Haroutounian S, Portesis N, Trizoglou I, Wallace Hayes A, Tsatsakis AM and Kouretas D: Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food Chem Toxicol. 61:60–68. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kirmizibekmez H, Calis I, Perozzo R, Brun R, Dönmez AA, Linden A, Rüedi P and Tasdemir D: Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med. 70:711–717. 2004. View Article : Google Scholar : PubMed/NCBI | |
You Q, Chen F, Ni H, Wang X, Jiang Y and McCoy JA: HPLC-MS analyses and bioactivities of novel chemicals in Devil's club (Oplopanax horridus (Sm.) Miq.). Food Chem. 135:199–207. 2012. View Article : Google Scholar | |
Park CM, Jin KS, Lee YW and Song YS: Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-κB translocation in LPS stimulated RAW 264.7 cells. Eur J Pharmacol. 660:454–459. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiao H, Wang J, Yuan L, Xiao C, Wang Y and Liu X: Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. J Agric Food Chem. 61:1509–1520. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huntimer ED, Halaweish FT and Chase CCL: Proliferative activity of Echinacea angustifolia root extracts on cancer cells: Interference with doxorubicin cytotoxicity. Chem Biodivers. 3:695–703. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Fang L, Liao J, Li L, Yao W, Xiong Z and Zhou X: Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo. PLoS One. 12:e01728382017. View Article : Google Scholar : PubMed/NCBI | |
Saleh MR, Metwally AM and Amer MM: Isolation of a flavonoidal substance from Cichorium pumilum jacq. Pharmazie. 30:4041975.PubMed/NCBI | |
Chen Z, Liu YM, Yang S, Song BA, Xu GF, Bhadury PS, Jin LH, Hu DY, Liu F, Xue W and Zhou X: Studies on the chemical constituents and anticancer activity of Saxifraga stolonifera (L) Meeb. Bioorg Med Chem. 16:1337–1344. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maiyo FC, Moodley R and Singh M: Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O glucoside and 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anticancer Agents Med Chem. 16:648–656. 2016. View Article : Google Scholar : PubMed/NCBI | |
Panat NA, Amrute KB, Battu S, Haram S, Sharma G and Ghaskadbi S: Antioxidant profiling of C3 quercetin glycosides: Quercitrin, quercetin 3-β-D-glucoside and quercetin 3-O-(6″-O-malonyl)-β-D-glucoside in cell free environment. Free Rad Antiox. 5:90–100. 2015. View Article : Google Scholar | |
Sassi N, Mattarei A, Espina V, Liotta L, Zoratti M, Paradisi C and Biasutto L: Potential anti-cancer activity of 7-O-pentyl quercetin: Efficient, membrane-targeted kinase inhibition and pro-oxidant effect. Pharmacol Res. 124:9–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sugantha Priya E, Selvakumar Benny K, Bavithra S, Elumalai P, Arunkumar R, Raja Singh P, Brindha Mercy A and Arunakaran J: Anti-cancer activity of quercetin in neuroblastoma: An in vitro approach. Neurol Sci. 35:163–170. 2014. View Article : Google Scholar : PubMed/NCBI | |
Danino O, Gottlieb HE, Grossman S and Bergman M: Antioxidant activity of 1,3-dicaffeoylquinic acid isolated from Inula viscosa. Food Res Int. 42:1273–1280. 2009. View Article : Google Scholar | |
Chen PN, Chu SC, Chiou HL, Chiang CL, Yang SF and Hsieh YS: Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr Cancer. 53:232–243. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cho E, Chung EY, Jang HY, Hong OY, Chae HS, Jeong YJ, Kim SY, Kim BS, Yoo DJ, Kim JS and Park KH: Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and DNA fragmentation in vitro and in vivo. Anticancer Agents Med Chem. 17:1519–1525. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee JS, Kim YR, Song IG, Ha SJ, Kim YE, Baek NI and Hong EK: Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. Int J Mol Med. 35:405–412. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meiers S, Kemény M, Weyand U, Gastpar R, von Angerer E and Marko D: The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J Agric Food Chem. 49:958–962. 2001. View Article : Google Scholar : PubMed/NCBI | |
Srivastava JK and Gupta S: Extraction, characterization, stability and biological activity of flavonoids isolated from Chamomile flowers. Mol Cell Pharmacol. 1:1382009. View Article : Google Scholar : PubMed/NCBI | |
Smiljkovic M, Stanisavljevic D, Stojkovic D, Petrovic I, Marjanovic Vicentic J, Popovic J, Golic Grdadolnik S, Markovic D, Sankovic-Babice S, Glamoclija J, et al: Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J. 16:795–807. 2017.PubMed/NCBI | |
Xu W, Liu J, Li C, Wu HZ and Liu YW: Kaempferol-7-O-beta-D-glucoside (KG) isolated from Smilax china L. rhizome induces G2/M phase arrest and apoptosis on HeLa cells in a p53-independent manner. Cancer Lett. 264:229–240. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nasri I, Chawech R, Girardi C, Mas E, Ferrand A, Vergnolle N, Fabre N, Mezghani-Jarraya R and Racaud-Sultan C: Anti-inflammatory and anticancer effects of flavonol glycosides from Diplotaxis harra through GSK3β regulation in intestinal cells. Pharm Biol. 55:124–131. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park JY, Kim SI, Lee HJ, Kim SS, Kwon YS and Chun W: Isorhamnetin-3-O-glucuronide suppresses JNK and p38 activation and increases heme-oxygenase-1 in lipopolysaccharide-challenged RAW264.7 cells. Drug Dev Res. 77:143–151. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Luo E, Liu X, Han B, Yu X and Peng X: Delphinidin-3-glucoside suppresses breast carcinogenesis by inactivating the Akt/HOTAIR signaling pathway. BMC Cancer. 16:4232016. View Article : Google Scholar : PubMed/NCBI | |
He X and Liu RH: Cranberry phytochemicals: Isolation, structure elucidation, and their antiproliferative and antioxidant activities. J Agric Food Chem. 54:7069–7074. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ghosh T, Maity T and Singh J: Evaluation of antitumor activity of stigmasterol, a constituent isolated from Bacopa monnieri Linn aerial parts against ehrlich ascites carcinoma in mice. Orient Pharm Exp Med. 11:41–49. 2011. View Article : Google Scholar | |
Kangsamaksin T, Chaithongyot S, Wootthichairangsan C, Hanchaina R, Tangshewinsirikul C and Svasti J: Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PLoS One. 12:e01896282017. View Article : Google Scholar : PubMed/NCBI | |
Syed Abdul Rahman SN, Abdul Wahab N and Abd Malek SN: In vitro morphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of Curcuma zedoaria. Evid Based Complement Alternat Med. 2013:2571082013. View Article : Google Scholar : PubMed/NCBI | |
Dutra LM, Bomfim LM, Rocha SL, Nepel A, Soares MB, Barison A, Costa EV and Bezerra DP: ent-Kaurane diterpenes from the stem bark of Annona vepretorum (Annonaceae) and cytotoxic evaluation. Bioorg Med Chem Lett. 24:3315–3320. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ali H, Dixit S, Ali D, Alqahtani SM, Alkahtani S and Alarifi S: Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des Devel Ther. 9:2793–2800. 2015. View Article : Google Scholar : PubMed/NCBI | |
Süntar I, Küpeli Akkol E, Keles H, Yesilada E, Sarker SD and Baykal T: Comparative evaluation of traditional prescriptions from Cichorium intybus L. for wound healing: Stepwise isolation of an active component by in vivo bioassay and its mode of activity. J Ethnopharmacol. 143:299–309. 2012. View Article : Google Scholar : PubMed/NCBI | |
Woyengo TA, Ramprasath VR and Jones PJ: Anticancer effects of phytosterols. Eur J Clin Nutr. 63:813–820. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng D, Guo Z and Zhang S: Effect of β-sitosterol on the expression of HPV E6 and p53 in cervical carcinoma cells. Contemp Oncol (Pozn). 19:36–42. 2015.PubMed/NCBI | |
Awad AB, Chinnam M, Fink CS and Bradford PG: β-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine. 14:747–754. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chai JW, Kuppusamy UR and Kanthimathi MS: Beta-sitosterol induces apoptosis in MCF7 cells. Malays J Biochem Mol Biol. 16:28–30. 2008. | |
Wilt TJ, Ishani A, MacDonald R, Stark G, Mulrow CD and Lau J: Beta-sitosterols for benign prostatic hyperplasia. Cochrane Database Syst Rev. CD0010432000.PubMed/NCBI | |
Nibret E, Youns M, Krauth-Siegel RL and Wink M: Biological activities of xanthatin from Xanthium strumarium leaves. Phytother Res. 25:1883–1890. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ryan E, Chopra J, McCarthy F, Maguire AR and O'Brien NM: Qualitative and quantitative comparison of the cytotoxic and apoptotic potential of phytosterol oxidation products with their corresponding cholesterol oxidation products. Br J Nutr. 94:443–451. 2005. View Article : Google Scholar : PubMed/NCBI | |
O'Callaghan Y, McCarthy FO and O'Brien NM: Recent advances in phytosterol oxidation products. Biochem Biophys Res Commun. 446:786–791. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oliveira H, Wu N, Zhang Q, Wang J, Oliveira J, de Freitas V, Mateus N, He J and Fernandes I: Bioavailability studies and anticancer properties of malvidin based anthocyanins, pyranoanthocyanins and non-oxonium derivatives. Food Funct. 7:2462–2468. 2016. View Article : Google Scholar : PubMed/NCBI | |
Amini AM, Spencer JPE and Yaqoob P: Effects of pelargonidin-3-O-glucoside and its metabolites on lipopolysaccharide-stimulated cytokine production by THP-1 monocytes and macrophages. Cytokine. 103:29–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duarte LJ, Chaves VC, Nascimento MVPDS, Calvete E, Li M, Ciraolo E, Ghigo A, Hirsch E, Simões CMO, Reginatto FH and Dalmarco EM: Molecular mechanism of action of Pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chem. 247:56–65. 2018. View Article : Google Scholar : PubMed/NCBI | |
Seong AR, Yoo JY, Choi K, Lee MH, Lee YH, Lee J, Jun W, Kim S and Yoon HG: Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells. Biochem Biophys Res Commun. 410:581–586. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang LS and Stoner GD: Anthocyanins and their role in cancer prevention. Cancer Lett. 269:281–290. 2008. View Article : Google Scholar : PubMed/NCBI | |
Das AK: Anticancer effect of Antimalarial artemisinin compounds. Ann Med Health Sci Res. 5:93–102. 2015. View Article : Google Scholar : PubMed/NCBI | |
Slezakova S and Ruda-Kucerova J: Anticancer activity of artemisinin and its derivatives. Anticancer Res. 37:5995–6003. 2017.PubMed/NCBI | |
Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, Shen HM and Wang J: Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med Res Rev. 37:1492–1517. 2017. View Article : Google Scholar : PubMed/NCBI | |
Crespo-Ortiz MP and Wei MQ: Antitumor activity of artemisinin and its derivatives: From a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. 2012:2475972012. View Article : Google Scholar : PubMed/NCBI | |
Gravett AM, Liu WM, Krishna S, Chan WC, Haynes RK, Wilson NL and Dalgleish AG: In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother Pharmacol. 67:569–577. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alotaibi KS, Li H, Rafi R and Siddiqui RA: Papaya black seeds have beneficial anticancer effects on PC-3 prostate cancer cells. J Cancer Metastasis Treat. 3:161–168. 2017. View Article : Google Scholar | |
Mayer M, O'Neill MA, Murray KE, Santos-Magalhães NS, Carneiro-Leão AM, Thompson AM and Appleyard VC: Usnic acid: A non-genotoxic compound with anti-cancer properties. Anticancer Drugs. 16:805–809. 2005. View Article : Google Scholar : PubMed/NCBI | |
Eryilmaz IE, Eskiler GG, Yurdacan B, Egeli Ü, Çeçener G and Tunca B: The cytotoxic and apoptotic effects of usnic acid on prostate cancer versus normal cells. Proceedings. 1:10272017. View Article : Google Scholar | |
Yang Y, Nguyen TT, Jeong MH, Crişan F, Yu YH, Ha HH, Choi KH, Jeong HG, Jeong TC, Lee KY, et al: Inhibitory activity of (+)-usnic acid against non-small cell lung cancer cell motility. PLoS One. 11:e01465752016. View Article : Google Scholar : PubMed/NCBI | |
Couri S, Gomes F, Nogueira R and Almeida DL: Determination of inulin content of chicory roots (Cichorium intybus L.) cultivated organically in three regions of Rio de Janeiro state. 2018. | |
Pool-Zobel B, van Loo J, Rowland I and Roberfroid MB: Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Br J Nutr. 87 (Suppl 2):S273–S281. 2002. View Article : Google Scholar : PubMed/NCBI | |
Taper HS and Roberfroid MB: Possible adjuvant cancer therapy by two prebiotics-Inulin or oligofructose. In Vivo. 19:201–204. 2005.PubMed/NCBI | |
Taper HS and Roberfroid M: Influence of inulin and oligofructose on breast cancer and tumor growth. J Nutr. 129 (Suppl 7):S1488–S1491. 1999. View Article : Google Scholar | |
Reddy BS, Hamid R and Rao CV: Effect of dietary oligofructose and inulin on colonic preneoplastic aberrant crypt foci inhibition. Carcinogenesis. 18:1371–1374. 1997. View Article : Google Scholar : PubMed/NCBI | |
Epstein JI, Carmichael M and Partin AW: OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology. 45:81–86. 1995. View Article : Google Scholar : PubMed/NCBI | |
Park MH and Hong JT: Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 5:E152016. View Article : Google Scholar : PubMed/NCBI | |
Tak PP and Firestein GS: NF-kappaB: A key role in inflammatory diseases. J Clin Invest. 107:7–11. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rasmussen MK, Zamaratskaia G and Ekstrand B: In vivo effect of dried chicory root (Cichorium intybus L.) on xenobiotica metabolising cytochrome P450 enzymes in porcine liver. Toxicol Lett. 200:88–91. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Antona C and Ingelman-Sundberg M: Cytochrome P450 pharmacogenetics and cancer. Oncogene. 25:1679–1691. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chang TKH: Activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) by herbal medicines. AAPS J. 11:590–601. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zuccato E, Venturi M, Di Leo G, Colombo L, Bertolo C, Doldi SB and Mussini E: Role of bile acids and metabolic activity of colonic bacteria in increased risk of colon cancer after cholecystectomy. Dig Dis Sci. 38:514–519. 1993. View Article : Google Scholar : PubMed/NCBI | |
Rasmussen MK, Klausen CL and Ekstrand B: Regulation of cytochrome P450 mRNA expression in primary porcine hepatocytes by selected secondary plant metabolites from chicory (Cichorium intybus L.). Food Chem. 146:255–263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schmidt BM, Ilic N, Poulev A and Raskin I: Toxicological evaluation of a chicory root extract. Food Chem Toxicol. 45:1131–1139. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mali P: Cytotoxicity activities of chloroform extract of Cichorium intybus seed against HCT-15 and Vero cell line. Int J Health Allied Sci. 4:267–270. 2015. View Article : Google Scholar | |
Soltanian S, Sheikhbahaei M and Mohamadi N: Cytotoxicity evaluation of methanol extracts of some medicinal plants on P19 embryonal carcinoma cells. J Appl Pharm Sci. 7:142–149. 2017. | |
Jiang Y, Kusama K, Satoh K, Takayama E, Watanabe S and Sakagami H: Induction of cytotoxicity by chlorogenic acid in human oral tumor cell lines. Phytomedicine. 7:483–491. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schumacher E, Vigh E, Molnár V, Kenyeres P, Fehér G, Késmárky G, Tóth K and Garai J: Thrombosis preventive potential of chicory coffee consumption: A clinical study. Phytother Res. 25:744–748. 2011. View Article : Google Scholar : PubMed/NCBI | |
Olsen NJ, Branch VK, Jonnala G, Seskar M and Cooper M: Phase 1, placebo-controlled, dose escalation trial of chicory root extract in patients with osteoarthritis of the hip or knee. BMC Musculoskelet Disord. 11:1562010. View Article : Google Scholar : PubMed/NCBI | |
Huseini HF, Alavian SM, Heshmat R, Heydari MR and Abolmaali K: The efficacy of Liv-52 on liver cirrhotic patients: A randomized, double-blind, placebo-controlled first approach. Phytomedicine. 12:619–624. 2005. View Article : Google Scholar : PubMed/NCBI | |
Soda K, Dobashi Y, Kano Y, Tsujinaka S and Konishi F: Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol. 44:727–732. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kiechl S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B, Willeit K, Werner P, Ruckenstuhl C, Iglseder B, Weger S, et al: Higher spermidine intake is linked to lower mortality: A prospective population-based study. Am J Clin Nutr. 108:371–380. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F and Kroemer G: Spermidine reduces cancer-related mortality in humans. Autophagy. 15:362–365. 2019. View Article : Google Scholar : PubMed/NCBI | |
Raj KP, Zell JA, Rock CL, McLaren CE, Zoumas-Morse C, Gerner EW and Meyskens FL: Role of dietary polyamines in a phase III clinical trial of difluoromethylornithine (DFMO) and sulindac for prevention of sporadic colorectal adenomas. Br J Cancer. 108:512–518. 2013. View Article : Google Scholar : PubMed/NCBI | |
Imam KMSU, Azam FMS, Jahan R and Rahmatullah M: Anticancer properties of anthocyanins: A reviewNatural Products: Research Reviews. Gupta VK: 4. Daya Publishing House; pp. 1–20. 2016 | |
Klippel KF, Hiltl DM and Schipp B: A multicentric, placebo- controlled, double-blind clinical trial of beta-sitosterol (phytosterol) for the treatment of benign prostatic hyperplasia. German BPH-Phyto Study group. Br J Urol. 80:427–432. 1997. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Peris P, Velasco C, Hernandez M, Lozano MA, Paron L, de la Cuerda C, Breton I, Camblor M and Guarner F: Effect of inulin and fructo-oligosaccharide on the prevention of acute radiation enteritis in patients with gynecological cancer and impact on quality-of-life: A randomized, double-blind, placebo-controlled trial. Eur J Clin Nurtr. 70:170–174. 2016. View Article : Google Scholar | |
Rosa LS, Silva NJA, Soares NCP, Monteiro MC and Teodoro AJ: Anticancer properties of phenolic acids in colon cancer a review. J Nutr Food Sci. 6:4682016. |