1
|
Reiter RE: Risk stratification of prostate
cancer 2016. Scand J Clin Lab Invest Suppl. 245 (Suppl):S54–S59.
2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li HZ and Zhang YS: Review of hot topics
in the diagnosis and treatment of prostate cancer in 2016. Zhonghua
Wai Ke Za Zhi. 55:59–62. 2017.(In Chinese). PubMed/NCBI
|
3
|
Brown KC, Perry HE, Lau JK, Jones DV,
Pulliam JF, Thornhill BA, Crabtree CM, Luo H, Chen YC and Dasgupta
P: Nicotine induces the up-regulation of the α7-nicotinic receptor
(α7-nAChR) in human squamous cell lung cancer cells via the
Sp1/GATA protein pathway. J Biol Chem. 288:33049–33059. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Cesario A, Russo P, Nastrucci C and
Granone P: Is α7-nAChR a possible target for lung cancer and
malignant pleural mesothelioma treatment? Curr Drug Targets.
13:688–694. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guo L, Wu Z and Zhou Q: Roles of nicotine
and nicotinic acetylcholine receptors (nAChR) in carcinogenesis and
development of lung cancer. Zhongguo Fei Ai Za Zhi. 14:753–757.
2011.(In Chinese). PubMed/NCBI
|
6
|
Li H, Wang S, Takayama K, Harada T,
Okamoto I, Iwama E, Fujii A, Ota K, Hidaka N, Kawano Y and
Nakanishi Y: Nicotine induces resistance to erlotinib via
cross-talk between α 1 nAChR and EGFR in the non-small cell lung
cancer xenograft model. Lung Cancer. 88:1–8. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Raffa RB: Cancer ‘survivor-care’: I. the
α7 nAChR as potential target for chemotherapy-related cognitive
impairment. J Clin Pharm Ther. 36:437–445. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tu CC, Huang CY, Cheng WL, Hung CS, Chang
YJ and Wei PL: Silencing A7-nAChR levels increases the sensitivity
of gastric cancer cells to ixabepilone treatment. Tumour Biol.
37:9493–9501. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sun H and Ma X: α5-nAChR modulates
nicotine-induced cell migration and invasion in A549 lung cancer
cells. Exp Toxicol Pathol. 67:477–482. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang JC, Cruchaga C, Saccone NL, Bertelsen
S, Liu P, Budde JP, Duan W, Fox L, Grucza RA, Kern J, et al: Risk
for nicotine dependence and lung cancer is conferred by mRNA
expression levels and amino acid change in CHRNA5. Hum Mol Genet.
18:3125–3135. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jia Y, Sun H, Wu H, Zhang H, Zhang X, Xiao
D, Ma X and Wang Y: Nicotine inhibits cisplatin-induced apoptosis
via regulating α5-nAChR/AKT signaling in human gastric cancer
cells. PLoS One. 11:e01491202016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Silva JM, Bulman C and McMahon M:
BRAFV600E cooperates with PI3K signaling, independent of AKT, to
regulate melanoma cell proliferation. Mol Cancer Res. 12:447–463.
2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hwang CS, Prieto VG, Diwan AH, Lizee G,
Ellerhorst JA, Ekmekcioglu S, Liu P, Eton O, Kinney SA, Grimm EA,
et al: Changes in pERK1/2 and pAKT expression in melanoma lesions
after imatinib treatment. Melanoma Res. 18:241–245. 2008.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Jiang L, Campagne C, Sundstrom E, Sousa P,
Imran S, Seltenhammer M, Pielberg G, Olsson MJ, Egidy G, Andersson
L and Golovko A: Constitutive activation of the ERK pathway in
melanoma and skin melanocytes in Grey horses. BMC Cancer.
14:8572014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Trisciuoglio D, Iervolino A, Zupi G and
Del Bufalo D: Involvement of PI3K and MAPK signaling in
bcl-2-induced vascular endothelial growth factor expression in
melanoma cells. Mol Biol Cell. 16:4153–4162. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang J, Yang Z, Wen J, Ma F, Wang F, Yu K,
Tang M, Wu W, Dong Y, Cheng X, et al: SKLB-M8 induces apoptosis
through the AKT/mTOR signaling pathway in melanoma models and
inhibits angiogenesis with decrease of ERK1/2 phosphorylation. J
Pharmacol Sci. 126:198–207. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jazirehi AR, Wenn PB and Damavand M:
Therapeutic implications of targeting the PI3Kinase/AKT/mTOR
signaling module in melanoma therapy. Am J Cancer Res. 2:178–191.
2012.PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu S, Chaudhry MR, Berrebi AA,
Papadimitriou JC, Drachenberg CB, Haririan A and Alexiev BA:
Polyomavirus replication and smoking are independent risk factors
for bladder cancer after renal transplantation. Transplantation.
101:1488–1494. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sharp L, Johansson H, Hatschek T and
Bergenmar M: Smoking as an independent risk factor for severe skin
reactions due to adjuvant radiotherapy for breast cancer. Breast.
22:634–638. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bhattacharyya S, Mandal S, Banerjee S,
Mandal GK, Bhowmick AK and Murmu N: Cannabis smoke can be a major
risk factor for early-age laryngeal cancer-a molecular
signaling-based approach. Tumour Biol. 36:6029–6036. 2015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hickey K, Do KA and Green A: Smoking and
prostate cancer. Epidemiol Rev. 23:115–125. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kenfield SA, Stampfer MJ, Chan JM and
Giovannucci E: Smoking and prostate cancer survival and recurrence.
JAMA. 305:2548–2555. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Huncharek M, Haddock KS, Reid R and
Kupelnick B: Smoking as a risk factor for prostate cancer: A
meta-analysis of 24 prospective cohort studies. Am J Public Health.
100:693–701. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Honda GD, Bernstein L, Ross RK, Greenland
S, Gerkins V and Henderson BE: Vasectomy, cigarette smoking, and
age at first sexual intercourse as risk factors for prostate cancer
in middle-aged men. Br J Cancer. 57:326–331. 1988. View Article : Google Scholar : PubMed/NCBI
|
26
|
Giovannucci E, Rimm EB, Ascherio A,
Colditz GA, Spiegelman D, Stampfer MJ and Willett WC: Smoking and
risk of total and fatal prostate cancer in united states health
professionals. Cancer Epidemiol Biomarkers Prev. 8:277–282.
1999.PubMed/NCBI
|
27
|
Veierãd MB, Laake P and Thelle DS: Dietary
fat intake and risk of prostate cancer: A prospective study of
25,708 Norwegian men. Int J Cancer. 73:634–638. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Heikkilä R, Aho K, Heliövaara M, Hakama M,
Marniemi J, Reunanen A and Knekt P: Serum testosterone and sex
hormone-binding globulin concentrations and the risk of prostate
carcinoma: A longitudinal study. Cancer. 86:312–315. 1999.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Spitz MR, Amos CI, Dong Q, Lin J and Wu X:
The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both
for nicotine dependence and for lung cancer. J Natl Cancer Inst.
100:1552–1556. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Duga S, Soldà G, Asselta R, Bonati MT,
Dalprà L, Malcovati M and Tenchini ML: Characterization of the
genomic structure of the human neuronal nicotinic acetylcholine
receptor CHRNA5/A3/B4 gene cluster and identification of novel
intragenic polymorphisms. J Hum Genet. 46:640–648. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Valor LM, Campos-Caro A, Carrasco-Serrano
C, Ortiz JA, Ballesta JJ and Criado M: Transcription Factors NF-Y
and Sp1 are important determinants of the promoter activity of the
bovine and human neuronal nicotinic receptor beta 4 subunit genes.
J Biol Chem. 277:8866–8876. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Majumder PK and Sellers WR: Akt-regulated
pathways in prostate cancer. Oncogene. 24:7465–7474. 2005.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Malik SN, Brattain M, Ghosh PM, Troyer DA,
Prihoda T, Bedolla R and Kreisberg JI: Immunohistochemical
demonstration of phospho-akt in high gleason grade prostate cancer.
Clin Cancer Res. 8:1168–1171. 2002.PubMed/NCBI
|
35
|
Kreisberg JI, Malik SN, Prihoda TJ,
Bedolla RG, Troyer DA, Kreisberg S and Ghosh PM: Phosphorylation of
Akt (Ser473) is an excellent predictor of poor clinical outcome in
prostate cancer. Cancer Res. 64:5232–5236. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Graff JR, Konicek BW, McNulty AM, Wang Z,
Houck K, Allen S, Paul JD, Hbaiu A, Goode RG, Sandusky GE, et al:
Increased AKT activity contributes to prostate cancer progression
by dramatically accelerating prostate tumor growth and diminishing
p27Kip1 expression. J Biol Chem. 275:24500–24505. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lin HK, Yeh S, Kang HY and Chang C: Akt
suppresses androgen-induced apoptosis by phosphorylating and
inhibiting androgen receptor. Proc Natl Acad Sci USA. 98:7200–7205.
2001. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yuge K, Kikuchi E, Hagiwara M, Yasumizu Y,
Tanaka N, Kosaka T, Miyajima A and Oya M: Nicotine induces tumor
growth and chemoresistance through activation of the PI3K/Akt/mTOR
pathway in bladder cancer. Mol Cancer Ther. 14:2112–2120. 2015.
View Article : Google Scholar : PubMed/NCBI
|