Open Access

BMP9 mediates the anticancer activity of evodiamine through HIF‑1α/p53 in human colon cancer cells

  • Authors:
    • Fu‑Shu Li
    • Jun Huang
    • Mao‑Zhi Cui
    • Jin‑Ru Zeng
    • Pei‑Pei Li
    • Ling Li
    • Yan Deng
    • Ying Hu
    • Bai‑Cheng He
    • De‑Zhong Shu
  • View Affiliations

  • Published online on: December 11, 2019     https://doi.org/10.3892/or.2019.7427
  • Pages: 415-426
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Colon cancer is one of the most common malignancies. Although there has been great development in treatment regimens over the last few decades, its prognosis remains poor. There is still a clinical need to find new drugs for colon cancer. Evodiamine (Evo) is a quinolone alkaloid extracted from the traditional herbal medicine plant Evodia rutaecarpa. In the present study, CCK‑8, flow cytometry, reverse transcription quantitative polymerase chain reaction, western blot analysis and a xenograft tumor model were used to evaluate the anti‑cancer activity of Evo in human colon cancer cells and determine the possible mechanism underlying this process. It was revealed that Evo exhibited prominent anti‑proliferation and apoptosis‑inducing effects in HCT116 cells. Bone morphogenetic protein 9 (BMP9) was notably upregulated by Evo in HCT116 cells. Exogenous BMP9 potentiated the anti‑cancer activity of Evo, and BMP9 silencing reduced this effect. In addition, HIF‑1α was also upregulated by Evo. The anticancer activity of Evo was enhanced by HIF‑1α, but was reduced by HIF‑1α silencing. BMP9 potentiated the effect of Evo on the upregulation of HIF‑1α, and enhanced the antitumor effect of Evo in colon cancer, which was clearly reduced by HIF‑1α silencing. In HCT116 cells, Evo increased the phosphorylation of p53, which was enhanced by BMP9 but reduced by BMP9 silencing. Furthermore, the effect of Evo on p53 was potentiated by HIF‑1α and reduced by HIF‑1α silencing. The present findings therefore strongly indicated that the anticancer activity of Evo may be partly mediated by BMP9 upregulation, which can activate p53 through upregulation of HIF‑1α, at least in human colon cancer.
View Figures
View References

Related Articles

Journal Cover

February-2020
Volume 43 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li FS, Huang J, Cui MZ, Zeng JR, Li PP, Li L, Deng Y, Hu Y, He BC, Shu DZ, Shu DZ, et al: BMP9 mediates the anticancer activity of evodiamine through HIF‑1α/p53 in human colon cancer cells. Oncol Rep 43: 415-426, 2020.
APA
Li, F., Huang, J., Cui, M., Zeng, J., Li, P., Li, L. ... Shu, D. (2020). BMP9 mediates the anticancer activity of evodiamine through HIF‑1α/p53 in human colon cancer cells. Oncology Reports, 43, 415-426. https://doi.org/10.3892/or.2019.7427
MLA
Li, F., Huang, J., Cui, M., Zeng, J., Li, P., Li, L., Deng, Y., Hu, Y., He, B., Shu, D."BMP9 mediates the anticancer activity of evodiamine through HIF‑1α/p53 in human colon cancer cells". Oncology Reports 43.2 (2020): 415-426.
Chicago
Li, F., Huang, J., Cui, M., Zeng, J., Li, P., Li, L., Deng, Y., Hu, Y., He, B., Shu, D."BMP9 mediates the anticancer activity of evodiamine through HIF‑1α/p53 in human colon cancer cells". Oncology Reports 43, no. 2 (2020): 415-426. https://doi.org/10.3892/or.2019.7427