1
|
Yang T, Yao S, Zhang X and Guo Y:
Andrographolide inhibits growth of human T-cell acute lymphoblastic
leukemia Jurkat cells by downregulation of PI3K/AKT and
upregulation of p38 MAPK pathways. Drug Des Devel Ther.
10:1389–1397. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mullighan CG, Phillips LA, Su X, Ma J,
Miller CB, Shurtleff SA and Downing JR: Genomic analysis of the
clonal origins of relapsed acute lymphoblastic leukemia. Science.
322:1377–1380. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yilmaz M, Kantarjian H and Jabbour E:
Treatment of acute lymphoblastic leukemia in older adults: Now and
the future. Clin Adv Hematol Oncol. 15:266–274. 2017.PubMed/NCBI
|
4
|
Fujimaki K, Hattori Y and Nakajima H:
10-year complete remission in a philadelphia chromosome-positive
acute lymphoblastic leukemia patient using imatinib without
high-intensity chemotherapy or allogeneic stem cell
transplantation. Int J Hematol. 107:709–711. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang SH, An FY, Xu JX, Kong LJ, He HL,
Chai YH and Zhao WL: Clinical features and prognostic factors of
children with acute lymphoblastic leukemia in high-risk group.
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 25:365–370. 2017.(In Chinese).
PubMed/NCBI
|
6
|
Anand P, Sundaram C, Jhurani S,
Kunnumakkara AB and Aggarwal BB: Curcumin and cancer: An ‘old-age’
disease with an ‘age-old’ solution. Cancer Lett. 267:133–164. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ireson CR, Jones DJ, Orr S, Coughtrie MW,
Boocock DJ, Williams ML, Farmer PB, Steward WF and Gescher AJ:
Metabolism of the cancer chemopreventive agent curcumin in human
and rat intestine. Cancer Epidemiol Biomarkers Prev. 11:105–111.
2002.PubMed/NCBI
|
8
|
Tabernero J, Kunzmann V, Scheithauer W,
Reni M, Shiansong Li J, Ferrara S and Djazouli K: Nab-paclitaxel
plus gemcitabine for metastatic pancreatic cancer: A subgroup
analysis of the Western European cohort of the MPACT trial. Onco
Targets Ther. 10:591–596. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang RW, Liu ZG, Xie Y, Wang LX, Li MC
and Sun X: In vitro inhibition of invasion and metastasis in colon
cancer cells by TanIIA. Genet Mol Res. 15:2016. View Article : Google Scholar :
|
10
|
Zu Y, Wang J, Ping W and Sun W: Tan IIA
inhibits H1299 cell viability through the MDM4-IAP3 signaling
pathway. Mol Med Rep. 17:2384–2392. 2018.PubMed/NCBI
|
11
|
Munagala R, Aqil F, Jeyabalan J, Vadhanam
M and Gupta R: Increased anti-tumor activity by novel systemic
delivery and molecular targets of tanshinone II A. Cancer Res.
70:56902011.
|
12
|
Shan QQ, Gong YP, Guo Y, Lin J, Zhou RQ
and Yang X: Anti-tumor effect of tanshinone IIA, tetrandrine,
honokiol, curcumin, oridonin and paeonol on leukemia cell lines.
Sichuan Da Xue Xue Bao Yi Xue Ban. 43:362–366. 2012.(In Chinese).
PubMed/NCBI
|
13
|
Yun SM, Jeong SJ, Kim JH, Jung JH, Lee HJ,
Sohn EJ, Lee MH and Kim SH: Activation of c-Jun N-terminal kinase
mediates tanshinone IIA-induced apoptosis in KBM-5 chronic myeloid
leukemia cells. Biol Pharm Bull. 36:208–214. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu C, Li J, Wang L, Wu F, Huang L, Xu Y,
Ye J, Xiao B, Meng F, Chen S and Yang M: Analysis of tanshinone IIA
induced cellular apoptosis in leukemia cells by genome-wide
expression profiling. BMC Complement Altern Med. 12:52012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Li L, Zhang ZH and Zhao WD: Apoptosis of
MR2 cells induced by tanshinone II A combined with arsenic
trioxide. Sichuan Da Xue Xue Bao Yi Xue Ban. 40:812–816. 2009.(In
Chinese). PubMed/NCBI
|
16
|
Keppler-Noreuil KM, Parker VE, Darling TN
and Martinez-Agosto JA: Somatic overgrowth disorders of the
PI3K/AKT/mTOR pathway & therapeutic strategies. Am J Med Genet
C Semin Med Genet. 172:402–421. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Goda S, Kaneshita Y, Inoue H, Domae E,
Ikeo T, Iida J and Domae N: Enamel matrix derivative protein
stimulated wound healing via phosphoinositide 3-kinase. J
Periodontol. 80:1631–1637. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Molgaard S, Ulrichsen M, Olsen D and
Glerup S: Detection of phosphorylated Akt and MAPK in cell culture
assays. MethodsX. 3:386–398. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Kwok-Shing Ng P, Kucherlapati M,
Chen F, Liu Y, Tsang YH, de Velasco G, Jeong KJ, Akbani R,
Hadjipanayis A, et al: A pan-cancer proteogenomic atlas of
PI3K/AKT/mTOR pathway alterations. Cancer Cell. 31:820–832.e3.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Costa RLB, Han HS and Gradishar WJ:
Targeting the PI3K/AKT/mTOR pathway in triple-negative breast
cancer: A review. Breast Cancer Res Treat. 169:397–406. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Park S, Chapuis N, Tamburini J, Bardet V,
Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C and
Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in
acute myeloid leukemia. Haematologica. 95:819–828. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Robles-Escajeda E, Das U, Ortega NM, Parra
K, Francia G, Dimmock JR, Varela-Ramirez A and Aguilera RJ: A novel
curcumin-like dienone induces apoptosis in triple-negative breast
cancer cells. Cell Oncol (Dordr). 39:265–277. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiang P, Chen M, Lu J, Chen C and Jiao BH:
Effect of tanshinone IIA on MMP-2 and iNOS expression and free
radical release in hippocampus of rat Alzheimer's disease model.
Acad J Second Mil Med Univ. 30:380–384. 2010. View Article : Google Scholar
|
24
|
Petrelli F, Viale G, Cabiddu M and Barni
S: Prognostic value of different cut-off levels of Ki-67 in breast
cancer: A systematic review and meta-analysis of 64,196 patients.
Breast Cancer Res Treat. 153:477–491. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mirzayans R, Andrais B, Kumar P and Murray
D: The growing complexity of cancer cell response to DNA-damaging
agents: Caspase 3 mediates cell death or survival? Int J Mol Sci.
17:E7082016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Castro MG, Campos LE, Rodriguez YI and
Alvarez SE: In vitro methods to study the modulation of migration
and invasion by sphingosine-1-phosphate. Methods Mol Biol.
1697:117–131. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Evans IM, Kennedy SA, Paliashvili K,
Santra T, Yamaji M, Lovering RC, Britton G, Frankel P, Kolch W and
Zachary IC: Vascular endothelial growth factor (VEGF) promotes
assembly of the p130Cas interactome to drive endothelial
chemotactic signaling and angiogenesis. Mol Cell Proteomics.
16:168–180. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gregory CD: Apoptosis in cancer
pathogenesis and anti-cancer therapy. New Perspectives and
Opportunities. Springer International Publishing; Cham: pp.
p2472016
|
29
|
Su CC and Chiu TL: Tanshinone IIA
decreases the protein expression of EGFR, and IGFR blocking the
PI3K/Akt/mTOR pathway in gastric carcinoma AGS cells both in
vitro and in vivo. Oncol Rep. 36:1173–1179. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang S, Liu Q, Luo H, Chen P, Wu X, Yang
M, Kong W and Guo W: UFLC-MS/MS analysis of four tanshinone
components in Salvia miltiorrhizae after ultrasound-assisted
extraction. J Chromatogr B Analyt Technol Biomed Life Sci.
1017-1018:204–210. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Buenafe OE, Orellana-Paucar A, Maes J,
Huang H, Ying X, De Borggraeve W, Crawford AD, Luyten W, Esguerra
CV and de Witte P: Tanshinone IIA exhibits anticonvulsant activity
in zebrafish and mouse seizure models. ACS Chem Neurosci.
4:1479–1487. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gong Y, Li Y, Abdolmaleky HM, Li L and
Zhou JR: Tanshinones inhibit the growth of breast cancer cells
through epigenetic modification of aurora A expression and
function. PLoS One. 7:e336562012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Su CC: Tanshinone IIA potentiates the
efficacy of 5-FU in Colo205 colon cancer cells in vivo through
downregulation of P-gp and LC3-II. Exp Ther Med. 3:555–559. 2012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chang TW, Lin CY, Tzeng YJ and Lur HS:
Synergistic combinations of tanshinone IIA and trans-resveratrol
toward cisplatin-comparable cytotoxicity in HepG2 human
hepatocellular carcinoma cells. Anticancer Res. 34:5473–5480.
2014.PubMed/NCBI
|
35
|
Lv C, Zeng HW, Wang JX, Yuan X, Zhang C,
Fang T, Yang PM, Wu T, Zhou YD, Nagle DG and Zhang WD: The
antitumor natural product tanshinone IIA inhibits protein kinase C
and acts synergistically with 17-AAG. Cell Death Dis. 9:1652018.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Hochhaus A and La Rosée P: Imatinib
therapy in chronic myelogenous leukemia: Strategies to avoid and
overcome resistance. Leukemia. 18:1321–1331. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jabbour E, Cortes J and Kantarjian H:
Treatment selection after imatinib resistance in chronic myeloid
leukemia. Target Oncol. 4:3–10. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pu X, Storr SJ, Zhang Y, Rakha EA, Green
AR, Ellis IO and Martin SG: Caspase-3 and caspase-8 expression in
breast cancer: Caspase-3 is associated with survival. Apoptosis.
22:357–368. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu JJ, Zhang Y, Lin DJ and Xiao RZ:
Tanshinone IIA inhibits leukemia THP-1 cell growth by induction of
apoptosis. Oncol Rep. 21:1075–1781. 2009.PubMed/NCBI
|
40
|
Zhang Y, Wei RX, Zhu XB, Cai L, Jin W and
Hu H: Tanshinone IIA induces apoptosis and inhibits the
proliferation, migration, and invasion of the osteosarcoma MG-63
cell line in vitro. Anticancer Drugs. 23:212–219. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rizwan A, Cheng M, Krishnamachary B, Jiang
L, Bhujwalla Z and Kristine G: Cancer cell adhesion and degradome
interact to metastasize. Cancer Res. 74:31642014.
|
42
|
Shi YL, Xu T, Li LP and Chen XP:
Over-expression of VEGF and MMP-9 in Residual Tumor Cells of
Hepatocellular Carcinoma after Embolization with Lipidol. J
Huazhong Univ Sci Technolog Med Sci. 33:90–95. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yang L, Dong ZR, Wen SP, Pan L, Zhang XJ,
Luo JM and Xu SR: Relationship between VEGF and MMP-2, MMP-9 in 82
patients with acute myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue
Za Zhi. 14:15–20. 2006.(In Chinese). PubMed/NCBI
|
44
|
Lonetti A, Cappellini A, Bertaina A,
Locatelli F, Pession A, Buontempo F, Evangelisti C, Evangelisti C,
Orsini E, Zambonin L, et al: Improving nelarabine efficacy in T
cell acute lymphoblastic leukemia by targeting aberrant
PI3K/AKT/mTOR signaling pathway. J Hematol Oncol. 9:1142016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Lin M: Experimental study of atorvastatin
regulation of HL-60 leukemia cell apoptosis through PI3K/AKT/mTOR.
J Hainan Med Univ. 22:9–12. 2016.
|
46
|
Tabe Y, Tafuri A, Sekihara K, Yang H and
Konopleva M: Inhibition of mTOR kinase as a therapeutic target for
acute myeloid leukemia. Expert Opin Ther Targets. 21:705–714. 2017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Jiang S, Wang Q, Feng M, Li J, Guan Z, An
D, Dong M, Peng Y, Kuerban K and Ye L: C2-ceramide enhances
sorafenib-induced caspase-dependent apoptosis via PI3K/AKT/mTOR and
Erk signaling pathways in HCC cells. Appl Microbiol Biotechnol.
101:1535–1546. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Reddy EP, Divakar SA, Reddy MVR, Cosenza
SC, Baker SJ, Akula B and Parekh S: Abstract 4519: Targeting of
cyclin D/Rb/E2F and PI3K/AKT/MTOR pathways with ON 123300 as a
therapeutic strategy for mantle cell lymphoma. Cancer Res.
74:45192014.
|
49
|
Di J, Gao K, Qu D, Yang J and Zheng J:
Rap2B promotes angiogenesis via PI3K/AKT/VEGF signaling pathway in
human renal cell carcinoma. Tumour Biol. 39:10104283177016532017.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhou H, Wu J, Wang T, Zhang X and Liu D:
CXCL10/CXCR3 axis promotes the invasion of gastric cancer via
PI3K/AKT pathway-dependent MMPs production. Biomed Pharmacother.
82:479–488. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ding L, Wang S, Wang W, Lv P, Zhao D, Chen
F, Meng T, Dong L and Qi L: Tanshinone IIA affects autophagy and
apoptosis of glioma cells by inhibiting phosphatidylinositol
3-Kinase/Akt/Mammalian target of rapamycin signaling pathway.
Pharmacology. 99:188–195. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Jin UH, Suh SJ, Chang HW, Son JK, Lee SH,
Son KH, Chang YC and Kim CH: Tanshinone IIA from Salvia
miltiorrhiza BUNGE inhibits human aortic smooth muscle cell
migration and MMP-9 activity through AKT signaling pathway. J Cell
Biochem. 104:15–26. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Munagala R, Aqil F, Jeyabalan J and Gupta
RC: Tanshinone IIA inhibits viral oncogene expression leading to
apoptosis and inhibition of cervical cancer. Cancer Lett.
356:536–546. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhou LH, Hu Q, Sui H, Ci SJ, Wang Y, Liu
X, Liu NN, Yin PH, Qin JM and Li Q: Tanshinone II-a inhibits
angiogenesis through down regulation of COX-2 in human colorectal
cancer. Asian Pac J Cancer Prev. 13:4453–4458. 2012. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ruiz-Medina BE, Lerma D, Hwang M, Ross JA,
Skouta R, Aguilera RJ, Kirken RA, Varela-Ramirez A and
Robles-Escajeda E: Green barley mitigates cytotoxicity in human
lymphocytes undergoing aggressive oxidative stress, via activation
of both the Lyn/PI3K/Akt and MAPK/ERK pathways. Sci Rep.
9:60052018. View Article : Google Scholar
|
56
|
Xu Y, Li N, Xiang R and Sun P: Emerging
roles of the p38 MAPK and PI3K/AKT/mTOR pathways in
oncogene-induced senescence. Trends Biochem Sci. 39:268–276. 2014.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Watson AL, Anderson LK, Greeley AD, Keng
VW, Rahrmann EP, Halfond AL, Powell NM, Collins MH, Rizvi T,
Moertel CL, et al: Co-targeting the MAPK and PI3K/AKT/mTOR pathways
in two genetically engineered mouse models of schwann cell tumors
reduces tumor grade and multiplicity. Oncotarget. 5:1502–1514.
2014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Saini KS, Loi S, de Azambuja E,
Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE and
Piccart-Gebhart MJ: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK
pathways in the treatment of breast cancer. Cancer Treat Rev.
39:935–946. 2013. View Article : Google Scholar : PubMed/NCBI
|