Clinical significance of the molecular heterogeneity of gastrointestinal stromal tumors and related research: A systematic review
- Authors:
- Haixiang Ding
- Xiuchong Yu
- Yu Yu
- Xifeng Lao
- Chen Hang
- Kaijun Gao
- Yangtao Jia
- Zhilong Yan
-
Affiliations: Medical School of Ningbo University, Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang 315211, P.R. China, Department of Gastrointestinal Surgery, The Ningbo First Hospital and The Affiliated Hospital of The Medical School of Ningbo University, Ningbo, Zhejiang 315010, P.R. China - Published online on: January 17, 2020 https://doi.org/10.3892/or.2020.7470
- Pages: 751-764
This article is mentioned in:
Abstract
Søreide K, Sandvik OM, Søreide JA, Giljaca V, Jureckova A and Bulusu VR: Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol. 40:39–46. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miettinen M, Sobin LH and Lasota J: Gastrointestinal stromal tumors of the stomach: A clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol. 29:52–68. 2005. View Article : Google Scholar : PubMed/NCBI | |
Briggler AM, Graham RP, Westin GF, Folpe AL, Jaroszewski DE, Okuno SH and Halfdanarson TR: Clinicopathologic features and outcomes of gastrointestinal stromal tumors arising from the esophagus and gastroesophageal junction. J Gastrointest Oncol. 9:718–727. 2018. View Article : Google Scholar : PubMed/NCBI | |
Emile JF, Brahimi S, Coindre JM, Bringuier PP, Monges G, Samb P, Doucet L, Hostein I, Landi B, Buisine MP, et al: Frequencies of KIT and PDGFRA mutations in the MolecGIST prospective population-based study differ from those of advanced GISTs. Med Oncol. 29:1765–1772. 2012. View Article : Google Scholar : PubMed/NCBI | |
Agaimy A and Wünsch PH: Lymph node metastasis in gastrointestinal stromal tumours (GIST) occurs preferentially in young patients < or = 40 years: An overview based on our case material and the literature. Langenbecks Arch Surg. 394:375–381. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Smyrk TC, Young WF Jr, Stratakis CA and Carney JA: Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: Findings in 104 cases. Am J Surg Pathol. 34:53–64. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pink D, Schoeler D, Lindner T, Thuss-Patience PC, Kretzschmar A, Knipp H, Vanhoefer U and Reichardt P: Severe hypoglycemia caused by paraneoplastic production of IGF-II in patients with advanced gastrointestinal stromal tumors: A report of two cases. J Clin Oncol. 23:6809–6811. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maynard MA and Huang SA: Thyroid hormone inactivation in gastrointestinal stromal tumors. N Engl J Med. 371:86–87. 2014.PubMed/NCBI | |
Duensing A, Medeiros F, McConarty B, Joseph NE, Panigrahy D, Singer S, Fletcher CD, Demetri GD and Fletcher JA: Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 23:3999–4006. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ricci R: Syndromic gastrointestinal stromal tumors. Hered Cancer Clin Pract. 14:152016. View Article : Google Scholar : PubMed/NCBI | |
Lee NK, Lee JH, Kim WK, Yun S, Youn YH, Park CH, Choi YY, Kim H and Lee SK: Promoter methylation of PCDH10 by HOTAIR regulates the progression of gastrointestinal stromal tumors. Oncotarget. 7:75307–75318. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kupcinskas J: Small molecules in rare tumors: Emerging role of microRNAs in GIST. Int J Mol Sci. 19:192018. View Article : Google Scholar | |
Demetri GD, Jeffers M and Reichardt PG: Mutational analysis of plasma DNA from patients (pts) in the phase III GRID study of regorafenib (REG) versus placebo (PL) in tyrosine kinase inhibitor (TKI)-refractory GIST: Correlating genotype with clinical outcomes. Oncol Res Treat. 37:58. 2013. | |
Nilsson B, Bümming P, Meis-Kindblom JM, Odén A, Dortok A, Gustavsson B, Sablinska K and Kindblom LG: Gastrointestinal stromal tumors: The incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era-a population-based study in western Sweden. Cancer. 103:821–829. 2005. View Article : Google Scholar : PubMed/NCBI | |
Joensuu H, Vehtari A, Riihimäki J, Nishida T, Steigen SE, Brabec P, Plank L, Nilsson B, Cirilli C, Braconi C, et al: Risk of recurrence of gastrointestinal stromal tumour after surgery: An analysis of pooled population-based cohorts. Lancet Oncol. 13:265–274. 2012. View Article : Google Scholar : PubMed/NCBI | |
Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P, Gaal J, Dahia PL, Liegl B, Ball ER, Raygada M, et al: NIH pediatric and wild-type GIST clinic: Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA. 108:314–318. 2011. View Article : Google Scholar : PubMed/NCBI | |
Broudy VC, Lin NL and Sabath DF: The fifth immunoglobulin-like domain of the Kit receptor is required for proteolytic cleavage from the cell surface. Cytokine. 15:188–195. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hanks SK, Quinn AM and Hunter T: The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science. 241:42–52. 1988. View Article : Google Scholar : PubMed/NCBI | |
Lennartsson J and Rönnstrand L: Stem cell factor receptor/c-Kit: From basic science to clinical implications. Physiol Rev. 92:1619–1649. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: Signaling by Kit protein-tyrosine kinase-the stem cell factor receptor. Biochem Biophys Res Commun. 337:1–13. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lennartsson J, Blume-Jensen P, Hermanson M, Pontén E, Carlberg M and Rönnstrand L: Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene. 18:5546–5553. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rotert JV, Leupold J, Hohenberger P, Nowak K and Allgayer H: Src activity is increased in gastrointestinal stromal tumors-analysis of associations with clinical and other molecular tumor characteristics. J Surg Oncol. 109:597–605. 2014. View Article : Google Scholar : PubMed/NCBI | |
Serve H, Hsu YC and Besmer P: Tyrosine residue 719 of the c-kit receptor is essential for binding of the P85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in COS-1 cells. J Biol Chem. 269:6026–6030. 1994.PubMed/NCBI | |
Sun J, Pedersen M and Rönnstrand L: Gab2 is involved in differential phosphoinositide 3-kinase signaling by two splice forms of c-Kit. J Biol Chem. 283:27444–27451. 2008. View Article : Google Scholar : PubMed/NCBI | |
Deberry C, Mou S and Linnekin D: Stat1 associates with c-kit and is activated in response to stem cell factor. Biochem J. 327:73–80. 1997. View Article : Google Scholar : PubMed/NCBI | |
Brizzi MF, Blechman JM, Cavalloni G, Givol D, Yarden Y and Pegoraro L: Protein kinase C-dependent release of a functional whole extracellular domain of the mast cell growth factor (MGF) receptor by MGF-dependent human myeloid cells. Oncogene. 9:1583–1589. 1994.PubMed/NCBI | |
Heinrich MC, Patterson J, Beadling C, Wang Y, Debiec-Rychter M, Dewaele B, Corless CL, Duensing A, Raut CP, Rubin B, et al: Genomic aberrations in cell cycle genes predict progression of KIT-mutant gastrointestinal stromal tumors (GISTs). Clin Sarcoma Res. 9:32019. View Article : Google Scholar : PubMed/NCBI | |
Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, et al: Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 279:577–580. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita K, Isozaki K, Hirota S, Nishida T, Chen H, Nakahara M, Nagasawa Y, Ohashi A, Shinomura Y, Kitamura Y and Matsuzawa Y: c-kit gene mutation at exon 17 or 13 is very rare in sporadic gastrointestinal stromal tumors. J Gastroenterol Hepatol. 18:147–151. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R, Hibbard MK, Chen CJ, Xiao S, Tuveson DA, et al: KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 61:8118–8121. 2001.PubMed/NCBI | |
Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, et al: Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 21:4342–4349. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xu CW, Lin S, Wang WL, Gao WB, Lv JY, Gao JS, Zhang LY, Li Y, Wang L, Zhang YP and Tian YW: Analysis of mutation of the c-Kit gene and PDGFRA in gastrointestinal stromal tumors. Exp Ther Med. 10:1045–1051. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martín J, Poveda A, Llombart-Bosch A, Ramos R, López-Guerrero JA, García del Muro J, Maurel J, Calabuig S, Gutierrez A, González de Sande JL, et al Spanish Group for Sarcoma Research, : Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: A study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol. 23:6190–6198. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wardelmann E, Losen I, Hans V, Neidt I, Speidel N, Bierhoff E, Heinicke T, Pietsch T, Büttner R and Merkelbach-Bruse S: Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int J Cancer. 106:887–895. 2003. View Article : Google Scholar : PubMed/NCBI | |
Singer S, Rubin BP, Lux ML, Chen CJ, Demetri GD, Fletcher CD and Fletcher JA: Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol. 20:3898–3905. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wozniak A, Rutkowski P, Schöffski P, Ray-Coquard I, Hostein I, Schildhaus HU, Le Cesne A, Bylina E, Limon J, Blay JY, et al: Tumor genotype is an independent prognostic factor in primary gastrointestinal stromal tumors of gastric origin: A European Multicenter Analysis based on ConticaGIST. Clin Cancer Res. 20:6105–6116. 2014. View Article : Google Scholar : PubMed/NCBI | |
Quek R, Farid M, Kanjanapan Y, Lim C, Tan IB, Kesavan S, Lim TKH, Oon LL, Goh BK, Chan WH, et al: Prognostic significance of KIT exon 11 deletion mutation in intermediate-risk gastrointestinal stromal tumor. Asia Pac J Clin Oncol. 13:115–124. 2017. View Article : Google Scholar : PubMed/NCBI | |
Debiec-Rychter M, Dumez H, Judson I, Wasag B, Verweij J, Brown M, Dimitrijevic S, Sciot R, Stul M, Vranck H, et al: Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC soft tissue and bone sarcoma group. Eur J Cancer. 40:689–695. 2004. View Article : Google Scholar : PubMed/NCBI | |
Antonescu CR, Sommer G, Sarran L, Tschernyavsky SJ, Riedel E, Woodruff JM, Robson M, Maki R, Brennan MF, Ladanyi M, et al: Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res. 9:3329–3337. 2003.PubMed/NCBI | |
Wozniak A, Rutkowski P, Piskorz A, Ciwoniuk M, Osuch C, Bylina E, Sygut J, Chosia M, Rys J, Urbanczyk K, et al: Prognostic value of KIT/PDGFRA mutations in gastrointestinal stromal tumours (GIST): Polish clinical GIST registry experience. Ann Oncol. 23:353–360. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lasota J, Wozniak A, Sarlomo-Rikala M, Rys J, Kordek R, Nassar A, Sobin LH and Miettinen M: Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors. A study of 200 cases. Am J Pathol. 157:1091–1095. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sakurai S, Oguni S, Hironaka M, Fukayama M, Morinaga S and Saito K: Mutations in c-kit gene exons 9 and 13 in gastrointestinal stromal tumors among Japanese. Jpn J Cancer Res. 92:494–498. 2001. View Article : Google Scholar : PubMed/NCBI | |
Künstlinger H, Huss S, Merkelbach-Bruse S, Binot E, Kleine MA, Loeser H, Mittler J, Hartmann W, Hohenberger P, Reichardt P, et al: Gastrointestinal stromal tumors with KIT exon 9 mutations: Update on genotype-phenotype correlation and validation of a high-resolution melting assay for mutational testing. Am J Surg Pathol. 37:1648–1659. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mulet-Margalef N and Garcia-Del-Muro X: Sunitinib in the treatment of gastrointestinal stromal tumor: Patient selection and perspectives. Onco Targets Ther. 9:7573–7582. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yeh CN, Chen TW, Tseng JH, Liu YY, Wang SY, Tsai CY, Chiang KC, Hwang TL, Jan YY and Chen MF: Surgical management in metastatic gastrointestinal stromal tumor (GIST) patients after imatinib mesylate treatment. J Surg Oncol. 102:599–603. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Tian Y, Li J, Sun N, Yuan J and Shen L: Secondary mutations of c-KIT contribute to acquired resistance to imatinib and decrease efficacy of sunitinib in Chinese patients with gastrointestinal stromal tumors. Med Oncol. 30:5222013. View Article : Google Scholar : PubMed/NCBI | |
Yeh CN, Chen MH, Chen YY, Yang CY, Yen CC, Tzen CY, Chen LT and Chen JS: A phase II trial of regorafenib in patients with metastatic and/or a unresectable gastrointestinal stromal tumor harboring secondary mutations of exon 17. Oncotarget. 8:44121–44130. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mazzocca A, Napolitano A, Silletta M, Spalato Ceruso M, Santini D, Tonini G and Vincenzi B: New frontiers in the medical management of gastrointestinal stromal tumours. Ther Adv Med Oncol. 11:17588359198419462019. View Article : Google Scholar : PubMed/NCBI | |
Lasota J, Corless CL, Heinrich MC, Debiec-Rychter M, Sciot R, Wardelmann E, Merkelbach-Bruse S, Schildhaus HU, Steigen SE, Stachura J, et al: Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: A multicenter study on 54 cases. Mod Pathol. 21:476–484. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lux ML, Rubin BP, Biase TL, Chen CJ, Maclure T, Demetri G, Xiao S, Singer S, Fletcher CD and Fletcher JA: KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol. 156:791–795. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ning ZQ, Li J and Arceci RJ: Activating mutations of c-kit at codon 816 confer drug resistance in human leukemia cells. Leuk Lymphoma. 41:513–522. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y and Metcalfe DD: Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA. 92:10560–10564. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tian Q, Frierson HF Jr, Krystal GW and Moskaluk CA: Activating c-kit gene mutations in human germ cell tumors. Am J Pathol. 154:1643–1647. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hongyo T, Li T, Syaifudin M, Baskar R, Ikeda H, Kanakura Y, Aozasa K and Nomura T: Specific c-kit mutations in sinonasal natural killer/T-cell lymphoma in China and Japan. Cancer Res. 60:2345–2347. 2000.PubMed/NCBI | |
Sakuma Y, Sakurai S, Oguni S, Satoh M, Hironaka M and Saito K: c-kit gene mutations in intracranial germinomas. Cancer Sci. 95:716–720. 2004. View Article : Google Scholar : PubMed/NCBI | |
Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, et al: PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 299:708–710. 2003. View Article : Google Scholar : PubMed/NCBI | |
Joensuu H, Hohenberger P and Corless CL: Gastrointestinal stromal tumour. Lancet. 382:973–983. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wardelmann E, Hrychyk A, Merkelbach-Bruse S, Pauls K, Goldstein J, Hohenberger P, Losen I, Manegold C, Büttner R and Pietsch T: Association of platelet-derived growth factor receptor alpha mutations with gastric primary site and epithelioid or mixed cell morphology in gastrointestinal stromal tumors. J Mol Diagn. 6:197–204. 2004. View Article : Google Scholar : PubMed/NCBI | |
Debiec-Rychter M, Wasag B, Stul M, De Wever I, Van Oosterom A, Hagemeijer A and Sciot R: Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J Pathol. 202:430–438. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lasota J, Dansonka-Mieszkowska A, Sobin LH and Miettinen M: A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest. 84:874–883. 2004. View Article : Google Scholar : PubMed/NCBI | |
Indio V, Astolfi A, Tarantino G, Urbini M, Patterson J, Nannini M, Saponara M, Gatto L, Santini D, do Valle IF, et al: Integrated molecular characterization of gastrointestinal stromal tumors (GIST) harboring the rare D842V mutation in PDGFRA gene. Int J Mol Sci. 19:E7322018. View Article : Google Scholar : PubMed/NCBI | |
Heinrich M, von Mehren M, Jones RL, Bauer S, Kang YK, Schöffski P, Eskens F, Serrano C, Cassier PA, Mir O, et al: Avapritinib is highly active and well-tolerated in patients (pts) with advanced GIST driven by diverse variety of oncogenic mutations in KIT and PDGFRA. Presented at: 2018 CTOS Annual Meeting; November 15, 2018 Rome, Italy (abstract 3027631). https://www.blueprintmedicines.com/wp-content/uploads/2019/01/CTOS-Avapritinib-Update-Nov-2018.pdf | |
Medeiros F, Corless CL, Duensing A, Hornick JL, Oliveira AM, Heinrich MC, Fletcher JA and Fletcher CD: KIT-negative gastrointestinal stromal tumors: Proof of concept and therapeutic implications. Am J Surg Pathol. 28:889–894. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lasota J and Miettinen M: KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). Semin Diagn Pathol. 23:91–102. 2006. View Article : Google Scholar : PubMed/NCBI | |
Corless CL, Schroeder A, Griffith D, Town A, McGreevey L, Harrell P, Shiraga S, Bainbridge T, Morich J and Heinrich MC: PDGFRA mutations in gastrointestinal stromal tumors: Frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol. 23:5357–5364. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lasota J, Stachura J and Miettinen M: GISTs with PDGFRA exon 14 mutations represent subset of clinically favorable gastric tumors with epithelioid morphology. Lab Invest. 86:94–100. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nishida T, Hirota S, Taniguchi M, Hashimoto K, Isozaki K, Nakamura H, Kanakura Y, Tanaka T, Takabayashi A, Matsuda H and Kitamura Y: Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet. 19:323–324. 1998. View Article : Google Scholar : PubMed/NCBI | |
Beghini A, Tibiletti MG, Roversi G, Chiaravalli AM, Serio G, Capella C and Larizza L: Germline mutation in the juxtamembrane domain of the kit gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer. 92:657–662. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lasota J and Miettinen M: A new familial GIST identified. Am J Surg Pathol. 30:13422006. View Article : Google Scholar : PubMed/NCBI | |
Robson ME, Glogowski E, Sommer G, Antonescu CR, Nafa K, Maki RG, Ellis N, Besmer P, Brennan M and Offit K: Pleomorphic characteristics of a germ-line KIT mutation in a large kindred with gastrointestinal stromal tumors, hyperpigmentation, and dysphagia. Clin Cancer Res. 10:1250–1254. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hirota S, Nishida T, Isozaki K, Taniguchi M, Nishikawa K, Ohashi A, Takabayashi A, Obayashi T, Okuno T, Kinoshita K, et al: Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology. 122:1493–1499. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hartmann K, Wardelmann E, Ma Y, Merkelbach-Bruse S, Preussner LM, Woolery C, Baldus SE, Heinicke T, Thiele J, Buettner R and Longley BJ: Novel germline mutation of KIT associated with familial gastrointestinal stromal tumors and mastocytosis. Gastroenterology. 129:1042–1046. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chompret A, Kannengiesser C, Barrois M, Terrier P, Dahan P, Tursz T, Lenoir GM and Bressac-De Paillerets B: PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology. 126:318–321. 2004. View Article : Google Scholar : PubMed/NCBI | |
Astolfi A, Nannini M, Pantaleo MA, Di Battista M, Heinrich MC, Santini D, Catena F, Corless CL, Maleddu A, Saponara M, et al: A molecular portrait of gastrointestinal stromal tumors: An integrative analysis of gene expression profiling and high-resolution genomic copy number. Lab Invest. 90:1285–1294. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wada R, Arai H, Kure S, Peng WX and Naito Z: ‘Wild type’ GIST: Clinicopathological features and clinical practice. Pathol Int. 66:431–437. 2016. View Article : Google Scholar : PubMed/NCBI | |
Prakash S, Sarran L, Socci N, DeMatteo RP, Eisenstat J, Greco AM, Maki RG, Wexler LH, LaQuaglia MP, Besmer P and Antonescu CR: Gastrointestinal stromal tumors in children and young adults: A clinicopathologic, molecular, and genomic study of 15 cases and review of the literature. J Pediatr Hematol Oncol. 27:179–187. 2005. View Article : Google Scholar : PubMed/NCBI | |
Janeway KA, Liegl B, Harlow A, Le C, Perez-Atayde A, Kozakewich H, Corless CL, Heinrich MC and Fletcher JA: Pediatric KIT wild-type and platelet-derived growth factor receptor alpha-wild-type gastrointestinal stromal tumors share KIT activation but not mechanisms of genetic progression with adult gastrointestinal stromal tumors. Cancer Res. 67:9084–9088. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gill AJ, Lipton L, Taylor J, Benn DE, Richardson AL, Frydenberg M, Shapiro J, Clifton-Bligh RJ, Chow CW and Bogwitz M: Germline SDHC mutation presenting as recurrent SDH deficient GIST and renal carcinoma. Pathology. 45:689–691. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miettinen M, Killian JK, Wang ZF, Lasota J, Lau C, Jones L, Walker R, Pineda M, Zhu YJ, Kim SY, et al: Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol. 37:234–240. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barletta JA and Hornick JL: Succinate dehydrogenase-deficient tumors: Diagnostic advances and clinical implications. Adv Anat Pathol. 19:193–203. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gill AJ: Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology. 44:285–292. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gaal J, Stratakis CA, Carney JA, Ball ER, Korpershoek E, Lodish MB, Levy I, Xekouki P, van Nederveen FH, den Bakker MA, et al: SDHB immunohistochemistry: A useful tool in the diagnosis of Carney-Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol. 24:147–151. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P and Lasota J: Succinate dehydrogenase-deficient GISTs: A clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol. 35:1712–1721. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carney JA, Sheps SG, Go VL and Gordon H: The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N Engl J Med. 296:1517–1518. 1977. View Article : Google Scholar : PubMed/NCBI | |
Boikos SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB, George S, Trent JC, von Mehren M, Wright JA, Schiffman JD, et al: Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: A report from the national institutes of health gastrointestinal stromal tumor clinic. JAMA Oncol. 2:922–928. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carney JA and Stratakis CA: Familial paraganglioma and gastric stromal sarcoma: A new syndrome distinct from the Carney triad. Am J Med Genet. 108:132–139. 2002. View Article : Google Scholar : PubMed/NCBI | |
McWhinney SR, Pasini B and Stratakis CA; International Carney Triad and Carney-Stratakis Syndrome Consortium, : Familial gastrointestinal stromal tumors and germ-line mutations. N Engl J Med. 357:1054–1056. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pasini B, McWhinney SR, Bei T, Matyakhina L, Stergiopoulos S, Muchow M, Boikos SA, Ferrando B, Pacak K, Assie G, et al: Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet. 16:79–88. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chou A, Chen J, Clarkson A, Samra JS, Clifton-Bligh RJ, Hugh TJ and Gill AJ: Succinate dehydrogenase-deficient GISTs are characterized by IGF1R overexpression. Mod Pathol. 25:1307–1313. 2012. View Article : Google Scholar : PubMed/NCBI | |
LeRoith D and Roberts CT Jr: The insulin-like growth factor system and cancer. Cancer Lett. 195:127–137. 2003. View Article : Google Scholar : PubMed/NCBI | |
Covello KL and Simon MC: HIFs, hypoxia, and vascular development. Curr Top Dev Biol. 62:37–54. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pugh CW and Ratcliffe PJ: Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat Med. 9:677–684. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lasota J, Wang Z, Kim SY, Helman L and Miettinen M: Expression of the receptor for type I insulin-like growth factor (IGF1R) in gastrointestinal stromal tumors: An immunohistochemical study of 1078 cases with diagnostic and therapeutic implications. Am J Surg Pathol. 37:114–119. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Cui K, Miyoshi K, Hennighausen L, Green JE, Setser J, LeRoith D and Yakar S: Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res. 63:4384–4388. 2003.PubMed/NCBI | |
Gallagher EJ and LeRoith D: Minireview: IGF, insulin, and cancer. Endocrinology. 152:2546–2551. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gotlieb WH, Bruchim I, Gu J, Shi Y, Camirand A, Blouin MJ, Zhao Y and Pollak MN: Insulin-like growth factor receptor I targeting in epithelial ovarian cancer. Gynecol Oncol. 100:389–396. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sarfstein R, Maor S, Reizner N, Abramovitch S and Werner H: Transcriptional regulation of the insulin-like growth factor-I receptor gene in breast cancer. Mol Cell Endocrinol. 252:241–246. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu JD, Haugk K, Woodke L, Nelson P, Coleman I and Plymate SR: Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J Cell Biochem. 99:392–401. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mahadevan D, Sutton GR, Arteta-Bulos R, Bowden CJ, Miller PJ, Swart RE, Walker MS, Haluska P, Munster PN, Marshall J, et al: Phase 1b study of safety, tolerability and efficacy of R1507, a monoclonal antibody to IGF-1R in combination with multiple standard oncology regimens in patients with advanced solid malignancies. Cancer Chemother Pharmacol. 73:467–473. 2014. View Article : Google Scholar : PubMed/NCBI | |
Miettinen M, Fetsch JF, Sobin LH and Lasota J: Gastrointestinal stromal tumors in patients with neurofibromatosis 1: A clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol. 30:90–96. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ferner RE: Neurofibromatosis 1 and neurofibromatosis 2: A twenty first century perspective. Lancet Neurol. 6:340–351. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maertens O, Prenen H, Debiec-Rychter M, Wozniak A, Sciot R, Pauwels P, De Wever I, Vermeesch JR, de Raedt T, De Paepe A, et al: Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum Mol Genet. 15:1015–1023. 2006. View Article : Google Scholar : PubMed/NCBI | |
Andersson J, Sihto H, Meis-Kindblom JM, Joensuu H, Nupponen N and Kindblom LG: NF1-associated gastrointestinal stromal tumors have unique clinical, phenotypic, and genotypic characteristics. Am J Surg Pathol. 29:1170–1176. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mussi C, Schildhaus HU, Gronchi A, Wardelmann E and Hohenberger P: Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clin Cancer Res. 14:4550–4555. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kalender M, Sevinc A, Tutar E, Sirikci A and Camci C: Effect of sunitinib on metastatic gastrointestinal stromal tumor in patients with neurofibromatosis type 1: A case report. World J Gastroenterol. 13:2629–2632. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cui Y and Guadagno TM: B-Raf (V600E) signaling deregulates the mitotic spindle checkpoint through stabilizing Mps1 levels in melanoma cells. Oncogene. 27:3122–3133. 2008. View Article : Google Scholar : PubMed/NCBI | |
Matos P, Oliveira C, Velho S, Gonçalves V, da Costa LT, Moyer MP, Seruca R and Jordan P: B-Raf(V600E) cooperates with alternative spliced Rac1b to sustain colorectal cancer cell survival. Gastroenterology. 135:899–906. 2008. View Article : Google Scholar : PubMed/NCBI | |
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huss S, Pasternack H, Ihle MA, Merkelbach-Bruse S, Heitkötter B, Hartmann W, Trautmann M, Gevensleben H, Büttner R, Schildhaus HU and Wardelmann E: Clinicopathological and molecular features of a large cohort of gastrointestinal stromal tumors (GISTs) and review of the literature: BRAF mutations in KIT/PDGFRA wild-type GISTs are rare events. Hum Pathol. 62:206–214. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hostein I, Faur N, Primois C, Boury F, Denard J, Emile JF, Bringuier PP, Scoazec JY and Coindre JM: BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol. 133:141–148. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rossi S, Gasparotto D, Miceli R, Toffolatti L, Gallina G, Scaramel E, Marzotto A, Boscato E, Messerini L, Bearzi I, et al: KIT, PDGFRA, and BRAF mutational spectrum impacts on the natural history of imatinib-naive localized GIST: A population-based study. Am J Surg Pathol. 39:922–930. 2015. View Article : Google Scholar : PubMed/NCBI | |
Simanshu DK, Nissley DV and McCormick F: RAS Proteins and their regulators in human disease. Cell. 170:17–33. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miranda C, Nucifora M, Molinari F, Conca E, Anania MC, Bordoni A, Saletti P, Mazzucchelli L, Pilotti S, Pierotti MA, et al: KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 18:1769–1776. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pantaleo MA, Nannini M, Corless CL and Heinrich MC: Quadruple wild-type (WT) GIST: Defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways. Cancer Med. 4:101–103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nannini M, Astolfi A, Urbini M, Indio V, Santini D, Heinrich MC, Corless CL, Ceccarelli C, Saponara M, Mandrioli A, et al: Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer. 14:6852014. View Article : Google Scholar : PubMed/NCBI | |
Brenca M, Rossi S, Polano M, Gasparotto D, Zanatta L, Racanelli D, Valori L, Lamon S, Dei Tos AP and Maestro R: Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST. J Pathol. 238:543–549. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Gao X, Hu Q, Li X, Xu J, Lu S, Liu Y, Xu C, Jiang D, Lin J, et al: PIK3C2A is a gene-specific target of microRNA-518a-5p in imatinib mesylate-resistant gastrointestinal stromal tumor. Lab Invest. 96:652–660. 2016. View Article : Google Scholar : PubMed/NCBI | |
Belinsky MG, Rink L, Cai KQ, Capuzzi SJ, Hoang Y, Chien J, Godwin AK and von Mehren M: Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case. BMC Cancer. 15:8872015. View Article : Google Scholar : PubMed/NCBI | |
Pantaleo MA, Urbini M, Indio V, Ravegnini G, Nannini M, De Luca M, Tarantino G, Angelini S, Gronchi A, Vincenzi B, et al: Genome-wide analysis identifies MEN1 and MAX mutations and a neuroendocrine-like molecular heterogeneity in quadruple WT GIST. Mol Cancer Res. 15:553–562. 2017. View Article : Google Scholar : PubMed/NCBI | |
Henze J, Mühlenberg T, Simon S, Grabellus F, Rubin B, Taeger G, Schuler M, Treckmann J, Debiec-Rychter M, Taguchi T, et al: p53 modulation as a therapeutic strategy in gastrointestinal stromal tumors. PLoS One. 7:e377762012. View Article : Google Scholar : PubMed/NCBI | |
Stewart CM and Tsui DWY: Circulating cell-free DNA for non-invasive cancer management. Cancer Genet. 228-229:169–179. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R and Rosenfeld N: Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev Cancer. 17:223–238. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kidess E and Jeffrey SS: Circulating tumor cells versus tumor-derived cell-free DNA: Rivals or partners in cancer care in the era of single-cell analysis? Genome Med. 5:702013. View Article : Google Scholar : PubMed/NCBI | |
Fiala C and Diamandis EP: Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med. 16:1662018. View Article : Google Scholar : PubMed/NCBI | |
Elazezy M and Joosse SA: Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J. 16:370–378. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maier J, Lange T, Kerle I, Specht K, Bruegel M, Wickenhauser C, Jost P, Niederwieser D, Peschel C, Duyster J and von Bubnoff N: Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin Cancer Res. 19:4854–4867. 2013. View Article : Google Scholar : PubMed/NCBI | |
Namløs HM, Boye K, Mishkin SJ, Barøy T, Lorenz S, Bjerkehagen B, Stratford EW, Munthe E, Kudlow BA, Myklebost O and Meza-Zepeda LA: Noninvasive detection of ctDNA reveals intratumor heterogeneity and is associated with tumor burden in gastrointestinal stromal tumor. Mol Cancer Ther. 17:2473–2480. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jilg S, Rassner M, Maier J, Waldeck S, Kehl V, Follo M, Philipp U, Sauter A, Specht K, Mitschke J, et al: Circulating cKIT and PDGFRA DNA indicates disease activity in gastrointestinal stromal tumor (GIST). Int J Cancer. 145:2292–2303. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lujambio A and Lowe SW: The microcosmos of cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI | |
Steponaitiene R, Kupcinskas J, Langner C, Balaguer F, Venclauskas L, Pauzas H, Tamelis A, Skieceviciene J, Kupcinskas L, Malfertheiner P and Link A: Epigenetic silencing of miR-137 is a frequent event in gastric carcinogenesis. Mol Carcinog. 55:376–386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR and Goel A: Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 70:6609–6618. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rizzato C, Campa D, Talar-Wojnarowska R, Halloran C, Kupcinskas J, Butturini G, Mohelníková-Duchoňová B, Sperti C, Tjaden C, Ghaneh P, et al: Association of genetic polymorphisms with survival of pancreatic ductal adenocarcinoma patients. Carcinogenesis. 37:957–964. 2016. View Article : Google Scholar : PubMed/NCBI | |
Catanzaro G, Sabato C, Russo M, Rosa A, Abballe L, Besharat ZM, Po A, Miele E, Bellavia D, Chiacchiarini M, et al: Loss of miR-107, miR-181c and miR-29a-3p promote activation of Notch2 signaling in pediatric high-grade gliomas (pHGGs). Int J Mol Sci. 18:E27422017. View Article : Google Scholar : PubMed/NCBI | |
Ihle MA, Trautmann M, Kuenstlinger H, Huss S, Heydt C, Fassunke J, Wardelmann E, Bauer S, Schildhaus HU, Buettner R and Merkelbach-Bruse S: miRNA-221 and miRNA-222 induce apoptosis via the KIT/AKT signalling pathway in gastrointestinal stromal tumours. Mol Oncol. 9:1421–1433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gits CM, van Kuijk PF, Jonkers MB, Boersma AW, van Ijcken WF, Wozniak A, Sciot R, Rutkowski P, Schöffski P, Taguchi T, et al: MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours. Br J Cancer. 109:1625–1635. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao CL, Niu HJ, Kang SP, Cong CL and Kang SR: miRNA-21 sensitizes gastrointestinal stromal tumors (GISTs) cells to imatinib via targeting B-cell lymphoma 2 (Bcl-2). Eur Rev Med Pharmacol Sci. 20:3574–3581. 2016.PubMed/NCBI | |
Yamamoto H, Kohashi K, Fujita A and Oda Y: Fascin-1 overexpression and miR-133b downregulation in the progression of gastrointestinal stromal tumor. Mod Pathol. 26:563–571. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Cui J, Liao G, Zhang Y, Ye K, Lu T, Qi J and Wan G: MiR-137 regulates epithelial-mesenchymal transition in gastrointestinal stromal tumor. Tumour Biol. 35:9131–9138. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu HJ, Yan J, Jin PY, Zheng GH, Qin SM, Wu DM, Lu J and Zheng YL: MicroRNA-152 inhibits tumor cell growth while inducing apoptosis via the transcriptional repression of cathepsin L in gastrointestinal stromal tumor. Cancer Biomark. 21:711–722. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan R, Zhong J, Zheng S, Wang Z, Xu Y, Li S, Zhou J and Yuan F: MicroRNA-218 inhibits gastrointestinal stromal tumor cell and invasion by targeting KIT. Tumour Biol. 35:4209–4217. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yun S, Kim WK, Kwon Y, Jang M, Bauer S and Kim H: Survivin is a novel transcription regulator of KIT and is downregulated by miRNA-494 in gastrointestinal stromal tumors. Int J Cancer. 142:2080–2093. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang WK, Akçakaya P, Gangaev A, Lee L, Zeljic K, Hajeri P, Berglund E, Ghaderi M, Åhlén J, Bränström R, et al: miR-125a-5p regulation increases phosphorylation of FAK that contributes to imatinib resistance in gastrointestinal stromal tumors. Exp Cell Res. 371:287–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, et al: Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 72:1126–1136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akçakaya P, Caramuta S, Åhlen J, Ghaderi M, Berglund E, Östman A, Bränström R, Larsson C and Lui WO: microRNA expression signatures of gastrointestinal stromal tumours: Associations with imatinib resistance and patient outcome. Br J Cancer. 111:2091–2102. 2014. View Article : Google Scholar : PubMed/NCBI | |
Juzėnas S, Saltenienė V, Kupcinskas J, Link A, Kiudelis G, Jonaitis L, Jarmalaite S, Kupcinskas L, Malfertheiner P and Skieceviciene J: Analysis of deregulated microRNAs and their target genes in gastric cancer. PLoS One. 10:e01323272015. View Article : Google Scholar : PubMed/NCBI | |
ElSharawy A, Röder C, Becker T, Habermann JK, Schreiber S, Rosenstiel P and Kalthoff H: Concentration of circulating miRNA-containing particles in serum enhances miRNA detection and reflects CRC tissue-related deregulations. Oncotarget. 7:75353–75365. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alemar B, Izetti P, Gregório C, Macedo GS, Castro MA, Osvaldt AB, Matte U and Ashton-Prolla P: miRNA-21 and miRNA-34a Are potential minimally invasive biomarkers for the diagnosis of pancreatic ductal adenocarcinoma. Pancreas. 45:84–92. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kou Y, Yang R and Wang Q: Serum miR-518e-5p is a potential biomarker for secondary imatinib-resistant gastrointestinal stromal tumor. J Biosci. 43:1015–1023. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bure I, Geer S, Knopf J, Roas M, Henze S, Ströbel P, Agaimy A, Wiemann S, Hoheisel JD, Hartmann A, et al: Long noncoding RNA HOTAIR is upregulated in an aggressive subgroup of gastrointestinal stromal tumors (GIST) and mediates the establishment of gene-specific DNA methylation patterns. Genes Chromosomes Cancer. 57:584–597. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Chen D, Chen X, Sun X, Dong Q, Hu C, Zhou F and Chen W: Downregulation of lncRNA CCDC26 contributes to imatinib resistance in human gastrointestinal stromal tumors through IGF-1R upregulation. Braz J Med Biol Res. 52:e83992019. View Article : Google Scholar : PubMed/NCBI |