1
|
Geller DS and Gorlick R: Osteosarcoma: A
review of diagnosis, management, and treatment strategies. Clin Adv
Hematol Oncol. 8:705–718. 2010.PubMed/NCBI
|
2
|
Blattmann C, Oertel S, Schulz-Ertner D,
Rieken S, Haufe S, Ewerbeck V, Unterberg A, Karapanagiotou-Schenkel
I, Combs SE, Nikoghosyan A, et al: Non-randomized therapy trial to
determine the safety and efficacy of heavy ion radiotherapy in
patients with non-resectable osteosarcoma. BMC Cancer. 10:962010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Luetke A, Meyers PA, Lewis I and Juergens
H: Osteosarcoma treatment-where do we stand? A state of the art
review. Cancer Treat Rev. 40:523–532. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bacci G, Longhi A, Versari M, Mercuri M,
Briccoli A and Picci P: Prognostic factors for osteosarcoma of the
extremity treated with neoadjuvant chemotherapy: 15-year experience
in 789 patients treated at a single institution. Cancer.
106:1154–1161. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang W, Yang J, Wang Y, Wang D, Han G, Jia
J, Xu M and Bi W: Survival and prognostic factors in Chinese
patients with osteosarcoma: 13-year experience in 365 patients
treated at a single institution. Pathol Res Pract. 213:119–125.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yan D, Sherman JH and Keidar M: Cold
atmospheric plasma, a novel promising anti-cancer treatment
modality. Oncotarget. 8:15977–15995. 2017.PubMed/NCBI
|
7
|
Keidar M, Yan D, Beilis II, Trink B and
Sherman JH: Plasmas for treating cancer: Opportunities for adaptive
and self-adaptive approaches. Trends Biotechnol. 36:586–593. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lee HJ, Shon CH, Kim YS, Kim S, Kim GC and
Kong MG: Degradation of adhesion molecules of G361 melanoma cells
by a non-thermal atmospheric pressure microplasma. New J Phys.
11:1150262009. View Article : Google Scholar
|
9
|
Schmidt A and Bekeschus S: Redox for
repair: Cold physical plasmas and Nrf2 signaling promoting wound
healing. Antioxidants (Basel). 7(pii): E1462018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Iseki S, Ohta T, Aomatsu A, Ito M, Kano H,
Higashijima Y and Hori M: Rapid inactivation of penicillium
digitatum spores using high-density nonequilibrium atmospheric
pressure plasma. Appl Phys Lett. 96:1537042010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Calvo T, Alvarez-Ordóñez A, Prieto M,
Bernardo A and López M: Stress adaptation has a minor impact on the
effectivity of non-thermal atmospheric plasma (NTAP) against
salmonella spp. Food Res Int. 102:519–525. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Köritzer J, Boxhammer V, Schäfer A,
Shimizu T, Klämpfl TG, Li YF, Welz C, Schwenk-Zieger S, Morfill GE,
Zimmermann JL and Schlegel J: Restoration of sensitivity in
chemo-resistant glioma cells by cold atmospheric plasma. PLoS One.
8:e644982013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chauvin J, Gibot L, Griseti E, Golzio M,
Rols MP, Merbahi N and Vicendo P: Elucidation of in vitro cellular
steps induced by antitumor treatment with plasma-activated medium.
Sci Rep. 9:48662019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Boehm D, Curtin J, Cullen PJ and Bourke P:
Hydrogen peroxide and beyond-the potential of high-voltage
plasma-activated liquids against cancerous cells. Anticancer Agents
Med Chem. 18:815–823. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yan D, Cui H, Zhu W, Nourmohammadi N,
Milberg J, Zhang LG, Sherman JH and Keidar M: The specific
vulnerabilities of cancer cells to the cold atmospheric
plasma-stimulated solutions. Sci Rep. 7:44792017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xiang L, Xu X, Zhang S, Cai D and Dai X:
Cold atmospheric plasma conveys selectivity on triple negative
breast cancer cells both in vitro and in vivo. Free Radic Biol Med.
124:205–213. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Utsumi F, Kajiyama H, Nakamura K, Tanaka
H, Mizuno M, Ishikawa K, Kondo H, Kano H, Hori M and Kikkawa F:
Effect of indirect nonequilibrium atmospheric pressure plasma on
anti-proliferative activity against chronic chemo-resistant ovarian
cancer cells in vitro and in vivo. PLoS One. 8:e815762013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Bekeschus S, Käding A, Schröder T, Wende
K, Hackbarth C, Liedtke KR, van der Linde J, von Woedtke T,
Heidecke CD and Partecke LI: Cold physical plasma-treated buffered
saline solution as effective agent against pancreatic cancer cells.
Anticancer Agents Med Chem. 18:824–831. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang L, Yang X, Yang C, Gao J, Zhao Y,
Cheng C, Zhao G and Liu S: The inhibition effect of cold
atmospheric plasma-activated media in cutaneous squamous carcinoma
cells. Future Oncol. 15:495–505. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tanaka H, Nakamura K, Mizuno M, Ishikawa
K, Takeda K, Kajiyama H, Utsumi F, Kikkawa F and Hori M:
Non-thermal atmospheric pressure plasma activates lactate in
Ringer's solution for anti-tumor effects. Sci Rep. 6:362822016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Judée F, Fongia C, Ducommun B, Yousfi M,
Lobjois V and Merbahi N: Short and long time effects of low
temperature plasma activated media on 3D multicellular tumor
spheroids. Sci Rep. 6:214212016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cooper M, Fridman G, Staack D, Gutsol AF,
Vasilets VN, Anandan S, Cho YI, Fridman A and Tsapin A:
Decontamination of surfaces from extremophile organisms using
nonthermal atmospheric-pressure plasmas. IEEE Trans Plasma Sci.
37:866–871. 2009. View Article : Google Scholar
|
23
|
Chauvin J, Judée F, Yousfi M, Vicendo P
and Merbahi N: Analysis of reactive oxygen and nitrogen species
generated in three liquid media by low temperature helium plasma
jet. Sci Rep. 7:45622017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ruan Z, Guo Y, Gao J, Yang C, Lan Y, Shen
J, Xu Z, Cheng C, Liu X, Zhang S, et al: Control of
multidrug-resistant planktonic Acinetobacter baumannii: Biocidal
efficacy study by atmospheric-pressure air plasma. Plasma Sci
Technol. 20:0655132018. View Article : Google Scholar
|
25
|
Liu Y, Tan S, Zhang H, Kong X, Ding L,
Shen J, Lan Y, Cheng C, Zhu T and Xia W: Selective effects of
non-thermal atmospheric plasma on triple-negative breast normal and
carcinoma cells through different cell signaling pathways. Sci Rep.
7:79802017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ottaviani G, Robert RS, Huh WW, Palla S
and Jaffe N: Sociooccupational and physical outcomes more than 20
years after the diagnosis of osteosarcoma in children and
adolescents: Limb salvage versus amputation. Cancer. 119:3727–3736.
2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mavrogenis AF, Abati CN, Romagnoli C and
Ruggieri P: Similar survival but better function for patients after
limb salvage versus amputation for distal tibia osteosarcoma. Clin
Orthop Relat Res. 470:1735–1748. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Takeuchi A, Lewis VO, Satcher RL, Moon BS
and Lin PP: What are the factors that affect survival and relapse
after local recurrence of osteosarcoma? Clin Orthop Relat Res.
472:3188–3195. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Guerrero-Preston R, Ogawa T, Uemura M,
Shumulinsky G, Valle BL, Pirini F, Ravi R, Sidransky D, Keidar M
and Trink B: Cold atmospheric plasma treatment selectively targets
head and neck squamous cell carcinoma cells. Int J Mol Med.
34:941–946. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schuster M, Seebauer C, Rutkowski R,
Hauschild A, Podmelle F, Metelmann C, Metelmann B, von Woedtke T,
Hasse S, Weltmann KD and Metelmann HR: Visible tumor surface
response to physical plasma and apoptotic cell kill in head and
neck cancer. J Craniomaxillofac Surg. 44:1445–1452. 2016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Koensgen D, Besic I, Gümbel D, Kaul A,
Weiss M, Diesing K, Kramer A, Bekeschus S, Mustea A and Stope MB:
Cold atmospheric plasma (CAP) and CAP-stimulated cell culture media
suppress ovarian cancer cell growth-A putative treatment option in
ovarian cancer therapy. Anticancer Res. 37:6739–6744.
2017.PubMed/NCBI
|
32
|
Yan D, Talbot A, Nourmohammadi N, Cheng X,
Canady J, Sherman J and Keidar M: Principles of using cold
atmospheric plasma stimulated media for cancer treatment. Sci Rep.
5:183392015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen Z, Li L, Cheng X, Gjika E and Keidar
M: Effects of cold atmospheric plasma generated in deionized water
in cell cancer therapy. Plasma Process Polym. 13:1151–1156. 2016.
View Article : Google Scholar
|
34
|
Li XY, Feng Z, Pu SC, Yun Y, Shi XM and Xu
Z: Cold atmospheric plasma jet-generated oxidized derivatives of
tryptophan and their selective effects on murine melanoma and
fibroblast cells. Plasma Chem Plasma Process. 38:919–936. 2018.
View Article : Google Scholar
|
35
|
Qiao J, Wu Y, Liu Y, Li X, Wu X, Liu N,
Zhu F, Qi K, Cheng H, Li D, et al: Busulfan triggers intrinsic
mitochondrial-dependent platelet apoptosis independent of platelet
activation. Biol Blood Marrow Transplant. 22:1565–1572. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Lemeshko VV: VDAC electronics: 3.
VDAC-Creatine kinase-dependent generation of the outer membrane
potential in respiring mitochondria. Biochim Biophys Acta.
1858:1411–1418. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lemeshko VV: VDAC electronics: 5 Mechanism
and computational model of hexokinase-dependent generation of the
outer membrane potential in brain mitochondria. Biochim Biophys
Acta Biomembr. 1860:2599–2607. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Elefantova K, Lakatos B, Kubickova J,
Sulova Z and Breier A: Detection of the mitochondrial membrane
potential by the cationic dye JC-1 in L1210 cells with massive
overexpression of the plasma membrane ABCB1 drug transporter. Int J
Mol Sci. 19(pii): E19852018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Brooks MM, Neelam S, Fudala R, Gryczynski
I and Cammarata PR: Lenticular mitoprotection. Part A: Monitoring
mitochondrial depolarization with JC-1 and artifactual fluorescence
by the glycogen synthase kinase-3β inhibitor, SB216763. Mol Vis.
19:1406–1412. 2013.PubMed/NCBI
|
40
|
Haeberlein SL: Mitochondrial function in
apoptotic neuronal cell death. Neurochem Res. 29:521–530. 2004.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Zorov DB, Juhaszova M and Sollott SJ:
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lee HS, Hwang CY, Shin SY, Kwon KS and Cho
KH: MLK3 is part of a feedback mechanism that regulates different
cellular responses to reactive oxygen species. Sci Signal.
7:ra522014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Song HJ, Lee EK, Lee JA, Kim HL and Jang
KW: The addition of mifamurtide to chemotherapy improves lifetime
effectiveness in children with osteosarcoma: A Markov model
analysis. Tumour Biol. 35:8771–8779. 2014. View Article : Google Scholar : PubMed/NCBI
|