1
|
Mueller S and Matthay KK: Neuroblastoma:
Biology and staging. Curr Oncol Rep. 11:431–438. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brodeur GM, Hogarty MD, Bagatell R, Mosse
YP and Maris JM: Neuroblastoma. In: Principles and Practice of
Pediatric Oncology. Pizzo PA and Poplack DG: JB Lippincott Company;
Philadelphia, PA: pp. 772–797. 2016
|
3
|
Brodeur GM: Neuroblastoma: Biological
insights into a clinical enigma. Nat Rev Cancer. 3:203–216. 2003.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Schwab M, Westermann F, Hero B and
Berthold F: Neuroblastoma: Biology and molecular and chromosomal
pathology. Lancet Oncol. 4:472–480. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brodeur GM, Minturn JE, Ho R, Simpson AM,
Iyer R, Varela CR, Light JE, Kolla V and Evans AE: Trk receptor
expression and inhibition in neuroblastomas. Clin Cancer Res.
15:3244–3250. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thiele CJ, Li Z and McKee AE: On Trk-the
TrkB signal transduction pathway is an increasingly important
target in cancer biology. Clin Cancer Res. 15:5962–5967. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Farinas I, Wilkinson GA, Backus C,
Reichardt LF and Patapoutian A: Characterization of neurotrophin
and Trk receptor functions in developing sensory ganglia: Direct
NT-3 activation of TrkB neurons in vivo. Neuron. 21:325–334. 1998.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Borrello MG, Bongarzone I, Pierotti MA,
Luksch R, Gasparini M, Collini P, Pilotti S, Rizzetti MG,
Mondellini P, De Bernardi B, et al: Trk and ret proto-oncogene
expression in human neuroblastoma specimens: High frequency of trk
expression in non-advanced stages. Int J Cancer. 54:540–545. 1993.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tahira T, Ishizaka Y, Itoh F, Nakayasu M,
Sugimura T and Nagao M: Expression of the ret proto-oncogene in
human neuroblastoma cell lines and its increase during neuronal
differentiation induced by retinoic acid. Oncogene. 6:2333–2338.
1991.PubMed/NCBI
|
10
|
Nagao M, Ishizaka Y, Nakagawara A, Kohno
K, Kuwano M, Tahira T, Itoh F, Ikeda I and Sugimura T: Expression
of ret proto-oncogene in human neuroblastomas. Jpn J Cancer Res.
81:309–312. 1990. View Article : Google Scholar : PubMed/NCBI
|
11
|
Arighi E, Borrello MG and Sariola H: RET
tyrosine kinase signaling in development and cancer. Cytokine
Growth Factor Rev. 16:441–467. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Enomoto H, Crawford PA, Gorodinsky A,
Heuckeroth RO, Johnson EM Jr and Millbrandt J: RET signaling is
essential for migration, axonal growth and axon guidance of
developing sympathetic neurons. Development. 128:3963–3974.
2001.PubMed/NCBI
|
13
|
Ernsberger U: The role of GDNF family
ligand signalling in the differentiation of sympathetic and dorsal
root ganglion. Cell Tissue Res. 333:353–337. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zwick E, Bange J and Ullrich A: Receptor
tyrosine kinase signalling as a target for cancer intervention
strategies. Endocr Relat Cancer. 8:161–173. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mulligan LM: RET revisited: Expanding the
oncogenic portfolio. Nat Rev Cancer. 14:173–186. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Airaksinen MS, Titievsky A and Saarma M:
GDNF family neurotrophic factor signaling: Four masters, one
servant? Mol Cell Neurosci. 13:313–325. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Santoro M, Carlomagno F, Melillo RM and
Fusco A: Dysfunction of the RET receptor in human cancer. Cell Mol
Life Sci. 61:2954–2964. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Santoro M, Melillo RM, Carlomagno F,
Vecchio G and Fusco A: Minireview: RET: Normal and abnormal
functions. Endocrinology. 145:5448–5451. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tahira T, Ishizaka Y, Itoh F, Sugimura T
and Nagao M: Characterization of ret proto-oncogene mRNAs encoding
two isoforms of the protein product in a human neuroblastoma cell
line. Oncogene. 5:97–102. 1990.PubMed/NCBI
|
20
|
Tsui-Pierchala BA, Ahrens RC, Crowder RJ,
Milbrandt J and Johnson EM Jr: The long and short isoforms of Ret
function as independent signaling complexes. J Biol Chem.
277:34618–34625. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Takahashi M, Buma Y and Taniguchi M:
Identification of the ret proto-oncogene products in neuroblastoma
and leukemia cells. Oncogene. 6:297–301. 1991.PubMed/NCBI
|
22
|
Ikeda I, Ishizaka Y, Tahira T, Suzuki T,
Onda M, Sugimura T and Nagao M: Specific expression of the ret
proto-oncogene in human neuroblastoma cell lines. Oncogene.
5:1291–1296. 1990.PubMed/NCBI
|
23
|
Itoh F, Ishizaka Y, Tahira T, Yamamoto M,
Miya A, Imai K, Yachi A, Takai S, Sugimura T and Nagao M:
Identification and analysis of the ret proto-oncogene promoter
region in neuroblastoma cell lines and medullary thyroid carcinomas
from MEN2A patients. Oncogene. 7:1201–1206. 1992.PubMed/NCBI
|
24
|
Hofstra RM, Cheng NC, Hansen C, Stulp RP,
Stelwagen T, Clausen N, Tommerup N, Caron H, Westerveld A, Versteeg
R and Buys CH: No mutations found by RET mutation scanning in
sporadic and hereditary neuroblastoma. Hum Genet. 97:362–364. 1996.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Peaston AE, Camacho ML, Norris MD, Haber
M, Marsh DJ, Robinson BG, Hyland VJ and Marshall GM: Absence of
MEN2A- or 2B-type RET mutations in primary neuroblastoma tumour
tissue. Mol Cell Probes. 12:239–242. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
DAlessio A, De Vita G, Cali G, Nitsch L,
Fusco A, Vecchio G, Santelli G, Santoro M and de Franciscis V:
Expression of the RET oncogene induces differentiation of SK-N-BE
neuroblastoma cells. Cell Growth Differ. 6:1387–1394.
1995.PubMed/NCBI
|
27
|
Bunone G, Borrello MG, Ricetti R,
Bongarzone I, Peverali FA, de Franciscis V, Della Valle G and
Pierotti MA: Induction of RET proto-oncogene expression in
neuroblastoma cells precedes neuronal differentiation and is not
mediated by protein synthesis. Exp Cell Res. 217:92–99. 1995.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Cerchia L, DAlessio A, Amabile G, Duconge
F, Pestourie C, Tavitian B, Libri D and de Franciscis V: An
autocrine loop involving Ret and Glial cell-derived neurotrophic
factor mediates retinoic acid-induced neuroblastoma cell
differentiation. Mol Cancer Res. 4:481–488. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee RHK, Wong WL, Chan CH and Chan SY:
Differential effects of glial cell line-derived neurotrophic factor
and neurturin in RET/GFRalpha1-expressing cells. J Neurosci Res.
83:80–90. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Uchida M, Enomoto A, Fukuda T, Kurokawa K,
Maeda K, Kodama Y, Asai N, Hasegawa T, Shimono Y, Jijiwa M, et al:
Dok-4 regulates GDNF-dependent neurite outgrowth through downstream
activation of Rap1 and mitogen-activated protein kinase. J Cell
Sci. 119:3067–3077. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ishida M, Ichihara M, Mii S, Jijiwa M,
Asai N, Enomoto A, Kato T, Majima A, Ping J, Murakumo Y and
Takahashi M: Sprouty2 regulates growth and differentiation of human
neuroblastoma cells through RET tyrosine kinase. Cancer Sci.
98:815–821. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Oppenheimer O, Cheung NK and Gerald WL:
The RET oncogene is a critical componenet of transcriptional
programs associated with retinoic acid-induced differentiation in
neuroblastoma. Mol Cancer Ther. 6:1300–1309. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yamada S, Nomura T, Uebersax L, Matsumoto
K, Fujita S, Miyake M and Miyake J: Retinoic acid induces
functional c-Ret tyroine kinase in human neuroblastoma.
Neuroreport. 18:359–363. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Iwamoto T, Taniguchi M, Wajjwalku W,
Nakashima I and Takahashi M: Neuroblastoma in a transgenic mouse
carrying a metallothionein/ret fusion gene. Br J Cancer.
67:504–507. 1993. View Article : Google Scholar : PubMed/NCBI
|
35
|
Takada N, Isogai E, Kawamoto T, Nakanishi
H, Todo S and Nakagawara A: Retinoic acid-induced apoptosis of the
CHP134 neuroblastoma cell line is associated with nuclear
accumulation of p53 and is rescued by the GDNF/Ret signal. Med
Pediatr Oncol. 36:122–126. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Futami H and Sakai R: RET protein promotes
non-adherent growth of NB-39-nu neuroblastoma cell line. Cancer
Sci. 100:1034–1039. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Esposito CL, DAlessio A, de Franciscis V
and Cerchia L: A cross-talk between TrkB and Ret tyrosine kindases
receptors mediates neuroblastoma cells differentiation. PLoS One.
3:e16432008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Peterson S and Bogenmann E: The RET and
TRKA pathways collaborate to regulate neuroblastoma
differentiation. Oncogene. 23:213–225. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Azar CG, Scavarda NJ, Nakagawara A and
Brodeur GM: Expression and function of the nerve growth factor
receptor (TRK-A) in human neuroblastoma cell lines. Prog Clin Biol
Res. 385:169–175. 1994.PubMed/NCBI
|
40
|
Brodeur GM, Nakagawara A, Yamashiro DJ,
Ikegaki N, Liu XG, Azar CG, Lee CP and Evans AE: Expression of
TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol.
31:49–55. 1997. View Article : Google Scholar : PubMed/NCBI
|
41
|
Croucher JL, Iyer R, Li N, Molteni V,
Loren J, Gordon WP, Tuntland T, Liu B and Brodeur GM: TrkB
inhibition by GNF-4256 slows growth and enhances chemotherapeutic
efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol.
75:131–141. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Eggert A, Ikegaki N, Liu X, Chou TT, Lee
VM, Trojanowski JQ and Brodeur GM: Molecular dissection of TrkA
signal transduction pathways mediating differentiation in human
neuroblastoma cells. Oncogene. 19:2043–2051. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Eggert A, Ikegaki N, Liu XG and Brodeur
GM: Prognostic and biological role of neurotrophin-receptor TrkA
and TrkB in neuroblastoma. Klin Padiatr. 212:200–205. 2000.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Evans AE, Kisselbach KD, Liu X, Eggert A,
Ikegaki N, Camoratto AM, Dionne C and Brodeur GM: Effect of CEP-751
(KT-6587) on neuroblastoma xenografts expressing TrkB. Med Pediatr
Oncol. 36:181–184. 2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ho R, Eggert A, Hishiki T, Minturn JE,
Ikegaki N, Foster P, Camoratto AM, Evans AE and Brodeur GM:
Resistance to chemotherapy mediated by TrkB in neuroblastomas.
Cancer Res. 62:6462–6466. 2002.PubMed/NCBI
|
46
|
Ho R, Minturn JE, Simpson AM, Iyer R,
Light JE, Evans AE and Brodeur GM: The effect of P75 on Trk
receptors in neuroblastomas. Cancer Lett. 305:76–85. 2011.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Iyer R, Evans AE, Qi X, Ho R, Minturn JE,
Zhao H, Balamuth N, Maris JM and Brodeur GM: Lestaurtinib enhances
the antitumor efficacy of chemotherapy in murine xenograft models
of neuroblastoma. Clin Cancer Res. 16:1478–1485. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Iyer R, Varela CR, Minturn JE, Ho R,
Simpson AM, Light JE, Evans AE, Zhao H, Thress K, Brown JL and
Brodeur GM: AZ64 inhibits TrkB and enhances the efficacy of
chemotherapy and local radiation in neuroblastoma xenografts.
Cancer Chemother Pharmacol. 70:477–486. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Iyer R, Wehrmann L, Golden RL, Naraparaju
K, Croucher JL, MacFarland SP, Guan P, Kolla V, Wei G, Cam N, et
al: Entrectinib is a potent inhibitor of Trk-driven neuroblastomas
in a xenograft mouse model. Cancer Lett. 372:179–186. 2016.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Nakagawara A, Arima-Nakagawara M, Scavarda
NJ, Azar CG, Cantor AB and Brodeur GM: Association between high
levels of expression of the TRK gene and favorable outcome in human
neuroblastoma. N Engl J Med. 328:847–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
51
|
Nakagawara A, Azar CG, Scarvarda NJ and
Brodeur GM: Expression and function of TRK-B and BDNF in human
neuroblastomas. Mol Cell Biol. 14:759–767. 1994. View Article : Google Scholar : PubMed/NCBI
|
52
|
Redden RA, Iyer R, Brodeur GM and Doolin
EJ: Rotary bioreactor culture can discern specific behavior
phenotypes in Trk-null and Trk-expressing neuroblastoma cell lines.
In Vitro Cell Dev Biol Anim. 50:188–193. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wickham H: Ggplot2: Elegant Graphics for
Data Analysis. Springer-Verlag. (New York, NY). 2009.
|
54
|
Schwarzer G, Carpenter JR and Rucker G:
Meta-Analysis with R (Use-R!). Springer International Switzerland.
(Basel). 2015.
|
55
|
Baloh RH, Tansey MG, Lampe PA, Fahrner TJ,
Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM Jr and
Milbrandt J: Artemin, a novel member of the GDNF ligand family,
supports peripheral and central neurons and signals through the
GFRalpha3-RET receptor complex. Neuron. 21:1291–1302. 1998.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Masure S, Geerts H, Cik M, Hoefnagel E,
Van Den Kieboom G, Tuytelaars A, Harris S, Lesage AS, Leysen JE,
Van Der Helm L, et al: Enovin, a member of the glial
cell-line-derived neurotrophic factor (GDNF) family with growth
promoting activity on neuronal cells. Existence and tissue-specific
expression of different splice variants. Eur J Biochem.
266:892–902. 1999. View Article : Google Scholar : PubMed/NCBI
|
57
|
Hishiki T, Nimura Y, Isogai E, Kondo K,
Ichimiya S, Nakamura Y, Ozaki T, Sakiyama S, Hirose M, Seki N, et
al: Glial cell line-derived neurotrophic factor/neurturin-induced
differentiation and its enhancement by retinoic acid in primary
human neuroblastomas expressing c-Ret, GFRalpha-1 and GFRalpha-2.
Cancer Res. 58:2158–2165. 1998.PubMed/NCBI
|
58
|
Tansey MG, Baloh RH, Milbrandt J and
Johnson EM Jr: GFRalpha-mediated localization of RET to lipid rafts
is required for effective downstream signaling, differentiation,
and neuronal survival. Neuron. 25:611–623. 2000. View Article : Google Scholar : PubMed/NCBI
|
59
|
Pierchala BA, Milbrandt J and Johnson EM
Jr: Glial cell line-derived neurotrophic factor-dependent
recruitment of Ret into lipid rafts enhances signaling by
partitioning Ret from proteasome-dependent degradation. J Neurosci.
26:2777–2787. 2006. View Article : Google Scholar : PubMed/NCBI
|
60
|
Richardson DS, Lai AZ and Mulligan LM: RET
ligand-induced internalization and its consequences for downstream
signaling. Oncogene. 25:3206–3211. 2006. View Article : Google Scholar : PubMed/NCBI
|
61
|
Lundgren T, Luebke M, Stenqvist A and
Ernfors P: Differential membrane compartmentalization of Ret by
PTB-adaptor engagement. FEBS J. 275:2055–2066. 2008. View Article : Google Scholar : PubMed/NCBI
|
62
|
Tsui-Pierchala BA, Millbrandt J and
Johnson EM Jr: NGF utilizes c-Ret via a novel GFL-independent,
inter-RTK signaling mechanism to maintain the trophic status of
mature sympathetic neurons. Neuron. 33:261–273. 2002. View Article : Google Scholar : PubMed/NCBI
|