1
|
Owens DK, Davidson KW, Krist AH, Barry MJ,
Cabana M, Caughey AB, Curry SJ, Doubeni CA, Epling JW, Kubik M, et
al: Screening for pancreatic cancer. JAMA. 322:4382019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Moffat GT, Epstein AS and O'Reilly EM:
Pancreatic cancer-A disease in need: Optimizing and integrating
supportive care. Cancer. 125:3927–3935. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rahib L, Fleshman JM, Matrisian LM and
Berlin JD: Evaluation of pancreatic cancer clinical trials and
benchmarks for clinically meaningful future trials: A systematic
review. JAMA Oncol. 2:1209–1216. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rahib L, Smith BD, Aizenberg R, Rosenzweig
AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and
deaths to 2030: The unexpected burden of thyroid, liver, and
pancreas cancers in the United States. Cancer Res. 74:2913–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shi Y, Gao W, Lytle NK, Huang P, Yuan X,
Dann AM, Ridinger-Saison M, Del Giorno KE, Antal CE, Liang G, et
al: Targeting LIF-mediated paracrine in- teraction for pancreatic
cancer therapy and monitoring. Nature. 569:131–135. 2019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Fox RG, Lytle NK, Jaquish DV, Park FD, Ito
T, Bajaj J, Claire S, Koechlein CS, Zimdahl B, Yano M, et al: Image
based detection and targeting of therapy resistance in pancreatic
adenocarcinoma. Nature. 534:407–411. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Karmazanovsky G, Fedorov V, Kubyshkin V
and Kotchatkov A: Pancreatic head cancer: Accuracy of CT in
determination of resectability. Abdom Imaging. 30:488–500. 2005.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Strobel O, Neoptolemos J, Jager D and
Buchler MW: Optimizing the outcomes of pancreatic cancer surgery.
Nat Rev Clin Oncol. 16:11–26. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Amrutkar M and Gladhaug I: Pancreatic
cancer chemoresistance to gemcita-bine. Cancers. 9:1572017.
View Article : Google Scholar
|
11
|
Feng H, Zhao X, Guo Q, Feng Y, Ma M, Guo
W, Dong X, Deng C, Li C, Song X, et al: Autophagy resists EMT
process to maintain retinal pigment epithelium homeostasis. Int J
Biol Sci. 15:507–521. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pastushenko I and Blanpain C: EMT
transition states during tumor pro-gression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rhim AD, Mirek ET, Aiello NM, Maitra A,
Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK,
Vonderheide RH, et al: EMT and dissemination precede pancreatic
tumor formation. Cell. 148:349–361. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
De Craene B and Berx G: Regulatory
networks defining EMT during cancer initiation and progression. Nat
Rev Cancer. 13:97–110. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Costanza B, Rademaker G, Tiamiou A, De
Tullio P, Leenders J, Blomme A, Bellier J, Bianchi E, Turtoi A,
Delvenne P, et al: Transforming growth factor beta-induced, an
extracellular matrix interacting protein, enhances glycolysis and
promotes pancreatic cancer cell migration. Int J Cancer.
145:1570–1584. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang N, Liu Y, Wang Y, Zhao M, Tu L and
Luo F: Decitabine reverses TGF-β1-induced epithelial-mesenchymal
transition in non-small-cell lung cancer by regulating miR-200/ZEB
axis. Drug Des Devel Ther. 11:969–983. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Enomoto A, Murakami H, Asai N, Morone N,
Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K and
Takahashi M: Akt/PKB regulates actin organization and cell motility
via Girdin/APE. Dev Cell. 9:389–402. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Weng L, Enomoto A, Ishida-Takagishi M,
Asai N and Takahashi M: Girding for migratory cues: Roles of the
Akt substrate Girdin in cancer progression and angiogenesis. Cancer
Sci. 101:836–842. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Anai M, Shojima N, Katagiri H, Ogihara T,
Sakoda H, Onishi Y, Ono H, Fujishiro M, Fukushima Y, Horike N, et
al: A novel protein kinase B (PKB)/AKT-binding protein enhances PKB
kinase activity and regulates DNA synthesis. J Biol Chem.
280:18525–18535. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang P, Enomoto A, Jijiwa M, Kato T,
Hasegawa T, Ishida M, Sato T, Asai N, Murakumo Y and Takahashi M:
An actin-binding protein Girdin regulates the motility of breast
cancer cells. Cancer Res. 68:1310–1318. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang X, Enomoto A, Weng L, Mizutani Y,
Abudureyimu S, Esaki N, Tsuyuki Y, Chen C, Mii S, Asai N, et al:
Girdin/GIV regulates collective cancer cell migration by
controlling cell adhesion and cytoskeletal organization. Cancer
Sci. 109:3643–3656. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Natsume A, Kato T, Kinjo S, Enomoto A,
Toda H, Shimato S, Ohka F, Motomura K, Kondo Y, Miyata T, et al:
Girdin maintains the stemness of glioblastoma stem cells. Oncogene.
31:2715–2724. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yamamura Y, Asai N, Enomoto A, Kato T, Mii
S, Kondo Y, Ushida K, Niimi K, Tsunoda N, Nagino M, et al:
Akt-Girdin signaling in cancer-associated fibroblasts contributes
to tumor progression. Cancer Res. 75:813–823. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Choi J, Kim KH, Oh E, Shin YK, Seo J, Kim
S, Park S and Choi Y: Girdin protein expression is associated with
poor prognosis in patients with invasive breast cancer. Pathology.
49:618–626. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ghosh P, Tie J, Muranyi A, Singh S,
Brunhoeber P, Leith K, Bowermaster R, Liao Z, Zhu Y, LaFleur B, et
al: Girdin (GIV) expression as a prognostic marker of recurrence in
mismatch repair-proficient stage ii colon cancer. Clin Cancer Res.
22:3488–3498. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shibata T, Matsuo Y, Shamoto T, Hirokawa
T, Tsuboi K, Takahashi H, Ishiguro H, Kimura M, Takeyama H and
Inagaki H: Girdin, a regulator of cell motility, is a potential
prognostic marker for esophageal squamous cell carcinoma. Oncol
Rep. 29:2127–2132. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gu F, Wang L, He J, Liu X, Zhang H, Li W,
Fu L and Ma Y: Girdin, an actin-binding protein, is critical for
migration, adhesion, and invasion of human glioblastoma cells. J
Neurochem. 131:457–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Weng L, Han Y, Enomoto A, Kitaura Y,
Nagamori S, Kanai Y, Asai N, An J, Takagishi M, Asai M, et al:
Negative regulation of amino acid signaling by MAPK-regulated
4F2hc/Girdin complex. PLoS Biol. 16:e20050902018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Garcia-Marcos M, Ear J, Farquhar MG and
Ghosh P: A GDI (AGS3) and a GEF (GIV) regulate autophagy by
balancing G protein activity and growth factor signals. Mol Biol
Cell. 22:673–686. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang S, Lei Y, Cai Z, Ye X, Li L, Luo X
and Yu C: Girdin regulates the proliferation and apoptosis of
pancreatic cancer cells via the PI3K/Akt signalling pathway. Oncol
Rep. 40:599–608. 2018.PubMed/NCBI
|
31
|
Livak JK and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang C, Qiao C, Wang R and Zhou W:
KiSS-1-mediated suppression of the invasive ability of human
pancreatic carcinoma cells is not dependent on the level of KiSS-1
receptor GPR54. Mol Med Rep. 13:123–129. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Si W, Liu X, Wei R, Zhang Y, Zhao Y, Cui L
and Hong T: MTA2-mediated inhibition of PTEN leads to pancreatic
ductal adenocarcinoma carcinogenicity. Cell Death Dis. 10:2062019.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Huang J, Mei H, Tang Z, Li J, Zhang X, Lu
Y, Huang F, Jin Q and Wang Z: Triple-amiRNA VEGFRs inhibition in
pancreatic cancer improves the effificacy of chemotherapy through
EMT regulation. J Cont Rele. 245:1–14. 2017. View Article : Google Scholar
|
35
|
Aiello NM, Brabletz T, Kang Y, Nieto MA,
Weinberg RA and Stanger BZ: Upholding a role for EMT in pancreatic
cancer metastasis. Nature. 547:E7–E8. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Braitsch CM, Azizoglu DB, Htike Y, Barlow
HR, Schnell U, Chaney CP, Carroll TJ, Stanger BZ and Cleaver O:
LATS1/2 suppress NFκB and aberrant EMT initiation to permit
pancreatic progenitor differentiation. PLoS Biol. 17:e30003822019.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Lekka K, Tzitzi E, Giakoustidis A,
Papadopoulos V and Giakoustidis D: Contemporary management of
borderline resectable pancreatic ductal adenocarcinoma. Ann
Hepatobiliary Pancreat Surg. 23:972019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bu JQ and Chen F: TGF-β1 promotes cells
invasion and migration by inducing epithelial mesenchymal
transformation in oral squamous cell carcinoma. Eur Rev Med
Pharmacol Sci. 21:2137–2144. 2017.PubMed/NCBI
|
39
|
Zhang Y, Li JH, Yuan QG, Cao G and Yang
WB: Upregulation of LASP2 inhibits pancreatic cancer cell migration
and invasion through suppressing TGF-β-induced EMT. J Cell Biochem.
120:13651–13657. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mann KM, Ying H, Juan J, Jenkins NA and
Copeland NG: KRAS-related proteins in pancreatic cancer. Pharmacol
Ther. 168:29–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Song M, Bode AM, Dong Z and Lee MH: AKT as
a therapeutic target for cancer. Cancer Res. 79:1019–1031. 2019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Martini M, De Santis MC, Braccini L,
Gulluni F and Hirsch E: PI3K/AKT signaling pathway and cancer: An
updated review. Ann Med. 46:372–383. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yamamoto S, Tomita Y, Hoshida Y, Morooka
T, Nagano H, Dono K, Umeshita K, Sakon M, Ishikawa O, Ohigashi H,
et al: Prognostic significance of activated Akt expression in
pancreatic ductal adenocarcinoma. Clin Cancer Res. 10:2846–2850.
2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Stoll V, Calleja V, Vassaux G, Downward J
and Lemoine NR: Dominant negative inhibitors of signalling through
the phosphoinositol 3-kinase pathway for gene therapy of pancreatic
cancer. Gut. 54:109–116. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ng SSW, Tsao MS, Chow S and Hedley DW:
Inhibition of phosphatidylinositide 3-kinase enhances
gemcitabine-induced apoptosis in human pancreatic cancer cells.
Cancer Res. 60:5451–5455. 2000.PubMed/NCBI
|
46
|
Ni W, Fang Y, Tong L, Tong Z, Yi F, Qiu J,
Wang R and Tong X: Girdin regulates the migration and invasion of
glioma cells via the PI3K-Akt signaling pathway. Mol Med Rep.
12:5086–5092. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Mittal Y, Pavlova Y, Garcia-Marcos M and
Ghosh P: Src homology domain 2-containing protein-tyrosine
phosphatase-1 (SHP-1) binds and dephosphorylates
G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and
attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt
signaling pathway. J Biol Chem. 286:32404–32415. 2011. View Article : Google Scholar : PubMed/NCBI
|