1
|
Akram M, Iqbal M, Daniyal M and Khan AU:
Awareness and current knowledge of breast cancer. Biol Res.
50:332017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Waks AG and Winer EP: Breast cancer
treatment. JAMA. 321:3162019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tungsukruthai S, Petpiroon N and
Chanvorachote P: Molecular mechanisms of breast cancer metastasis
and potential anti-metastatic compounds. Anticancer Res.
38:2607–2618. 2018.PubMed/NCBI
|
4
|
Peart O: Metastatic breast cancer. Radiol
Technol. 88:519M–539M. 2017.PubMed/NCBI
|
5
|
Riobo-Del Galdo NA, Lara Montero Á and
Wertheimer EV: Role of hedgehog signaling in breast cancer:
Pathogenesis and therapeutics. Cells. 8:3752019. View Article : Google Scholar
|
6
|
Chu PY, Hou MF, Lai JC, Chen LF and Lin
CS: Cell reprogramming in tumorigenesis and its therapeutic
implications for breast cancer. Int J Mol Sci. 20:18272019.
View Article : Google Scholar
|
7
|
Zong X, Yang H, Yu Y, Zou D, Ling Z, He X
and Meng X: Possible role of Pax-6 in promoting breast cancer cell
proliferation and tumorigenesis. BMB Rep. 44:595–600. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Pastuszak-Lewandoska D, Kordiak J, Antczak
A, Migdalska- Sęk M, Czarnecka KH, Górski P, Nawrot E,
Kiszałkiewicz JM, Domańska-Senderowska D and Brzeziańska-Lasota E:
Expression level and methylation status of three tumor suppressor
genes, DLEC1, ITGA9 and MLH1, in non-small cell lung cancer. Med
Oncol. 33:752016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu A, Ahsanul Kabir Khan M, Chen F, Zhong
Z, Chen HC and Song Y: Overexpression of autotaxin is associated
with human renal cell carcinoma and bladder carcinoma and their
progression. Med Oncol. 33:1312016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Strachan T and Read AP: PAX genes. Curr
Opin Genet Dev. 4:427–438. 1994. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang J, Lu JP, Suter DM, Krause KH, Fini
ME, Chen B and Lu Q: Isoform- and dose-sensitive feedback
interactions between paired box 6 gene and delta-catenin in cell
differentiation and death. Exp Cell Res. 316:1070–1081. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Elso C, Lu X, Weisner PA, Thompson HL,
Skinner A, Carver E and Stubbs L: A reciprocal translocation
dissects roles of Pax6 alternative promoters and upstream
regulatory elements in the development of pancreas, brain, and eye.
Genesis. 51:630–646. 2013.PubMed/NCBI
|
13
|
Liu Y, Han N, Zhou S, Zhou R, Yuan X, Xu
H, Zhang C, Yin T and Wu K: The DACH/EYA/SIX gene network and its
role in tumor initiation and progression. Int J Cancer.
138:1067–1075. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Anantharajan J, Zhou H, Zhang L, Hotz T,
Vincent MY, Blevins MA, Jansson AE, Kuan JWL, Ng EY, Yeo YK, et al:
Structural and functional analyses of an allosteric EYA2
phosphatase inhibitor that has on target effects in human lung
cancer cells. Mol Cancer Ther. 18:1484–1496. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chu Y, Chen Y, Li M, Shi D, Wang B, Lian
Y, Cheng X, Wang X, Xu M, Cheng T, et al: Six1 regulates leukemia
stem cell maintenance in acute myeloid leukemia. Cancer Sci.
110:2200–2210. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kingsbury TJ, Kim M and Civin CI:
Regulation of cancer stem cell properties by SIX1, a member of the
PAX-SIX-EYA-DACH network. Adv Cancer Res. 141:1–42. 2019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Benzina S, Beauregard AP, Guerrette R,
Jean S, Faye MD, Laflamme M, Maïcas E, Crapoulet N, Ouellette RJ
and Robichaud GA: Pax-5 is a potent regulator of E-cadherin and
breast cancer malignant processes. Oncotarget. 8:12052–12066. 2017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Luo J, Li H and Zhang C: MicroRNA-7
inhibits the malignant phenotypes of non-small cell lung cancer in
vitro by targeting Pax6. Mol Med Rep. 12:5443–5448. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li Y, Li Y, Liu Y, Xie P, Li F and Li G:
PAX6, a novel target of microRNA-7, promotes cellular proliferation
and invasion in human colorectal cancer cells. Dig Dis Sci.
59:598–606. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shyr CR, Tsai MY, Yeh S, Kang HY, Chang
YC, Wong PL, Huang CC, Huang KE and Chang C: Tumor suppressor PAX6
functions as androgen receptor co-repressor to inhibit prostate
cancer growth. Prostate. 70:190–199. 2010.PubMed/NCBI
|
21
|
Muratovska A, Zhou C, He S, Goodyer P and
Eccles MR: Paired-box genes are frequently expressed in cancer and
often required for cancer cell survival. Oncogene. 22:7989–7997.
2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Maulbecker CC and Gruss P: The oncogenic
potential of Pax genes. EMBO J. 12:2361–2367. 1993. View Article : Google Scholar : PubMed/NCBI
|
23
|
Qian Z, Zhang Q, Hu Y, Zhang T, Li J, Liu
Z, Zheng H, Gao Y, Jia W, Hu A, et al: Investigating the mechanism
by which SMAD3 induces PAX6 transcription to promote the
development of non-small cell lung cancer. Respir Res. 19:2622018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lai JP, Mertens RB, Mirocha J, Koo J,
Venturina M, Chung F, Mendez AB, Kahn M and Dhall D: Comparison of
PAX6 and PAX8 as immunohistochemical markers for pancreatic
neuroendocrine tumors. Endocr Pathol. 26:54–62. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zou Q, Yi W, Huang J, Fu F, Chen G and
Zhong D: MicroRNA-375 targets PAX6 and inhibits the viability,
migration and invasion of human breast cancer MCF-7 cells. Exp Ther
Med. 14:1198–1204. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Meng Y, Zou Q, Liu T, Cai X, Huang Y and
Pan J: microRNA-335 inhibits proliferation, cell-cycle progression,
colony formation, and invasion via targeting PAX6 in breast cancer
cells. Mol Med Rep. 11:379–385. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xia X, Yin W, Zhang X, Yu X, Wang C, Xu S,
Feng W and Yang H: PAX6 overexpression is associated with the poor
prognosis of invasive ductal breast cancer. Oncol Lett.
10:1501–1506. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Urrutia G, Laurito S, Campoy E, Nasif D,
Branham MT and Roqué M: PAX6 promoter methylation correlates with
MDA-MB-231 cell migration, and expression of MMP2 and MMP9. Asian
Pac J Cancer Prev. 19:2859–2866. 2018.PubMed/NCBI
|
29
|
Wang Y and Zhou BP: Epithelial-mesenchymal
transition in breast cancer progression and metastasis. Chin J
Cancer. 30:603–611. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Valle Oseguera CA and Spencer JV: Human
cytomegalovirus interleukin-10 enhances matrigel invasion of
MDA-MB-231 breast cancer cells. Cancer Cell Int. 17:242017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
He Z, Xu Q, Wang X, Wang J, Mu X, Cai Y,
Qian Y, Shao W and Shao Z: RPLP1 promotes tumor metastasis and is
associated with a poor prognosis in triple-negative breast cancer
patients. Cancer Cell Int. 18:1702018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Stalker L, Pemberton J and Moorehead RA:
Inhibition of proliferation and migration of luminal and
claudin-low breast cancer cells by PDGFR inhibitors. Cancer Cell
Int. 14:892014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Borrull A, Ghislin S, Deshayes F, Lauriol
J, Alcaide-Loridan C and Middendorp S: Nanog and Oct4
overexpression increases motility and transmigration of melanoma
cells. J Cancer Res Clin Oncol. 138:1145–1154. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu Y, Sarkissyan M and Vadgama JV:
Epithelial-mesenchymal transition and breast cancer. J Clin Med.
5:132016. View Article : Google Scholar
|
35
|
Prieto-García E, Díaz-García CV,
García-Ruiz I and Agulló- Ortuño MT: Epithelial-to-mesenchymal
transition in tumor progression. Med Oncol. 34:1222017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Abudureheman A, Ainiwaer J, Hou Z, Niyaz
M, Turghun A, Hasim A, Zhang H, Lu X and Sheyhidin I: High MLL2
expression predicts poor prognosis and promotes tumor progression
by inducing EMT in esophageal squamous cell carcinoma. J Cancer Res
Clin Oncol. 144:1025–1035. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Farabaugh SM, Micalizzi DS, Jedlicka P,
Zhao R and Ford HL: Eya2 is required to mediate the pro-metastatic
functions of Six1 via the induction of TGF-β signaling,
epithelial-mesenchymal transition, and cancer stem cell properties.
Oncogene. 31:552–562. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jin M, He Q, Zhang S, Cui Y, Han L and Liu
K: Gastrodin suppresses pentylenetetrazole-induced seizures
progression by modulating oxidative stress in zebrafish. Neurochem
Res. 43:904–917. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Karlsson J, von Hofsten J and Olsson PE:
Generating transparent zebrafish: A refined method to improve
detection of gene expression during embryonic development. Mar
Biotechnol (NY). 3:522–527. 2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Harrell JC, Dye WW, Allred DC, Jedlicka P,
Spoelstra NS, Sartorius CA and Horwitz KB: Estrogen receptor
positive breast cancer metastasis: Altered hormonal sensitivity and
tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer
Res. 66:9308–9315. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Singha PK, Pandeswara S, Geng H, Lan R,
Venkatachalam MA, Dobi A, Srivastava S and Saikumar P: Increased
Smad3 and reduced Smad2 levels mediate the functional switch of
TGF-β from growth suppressor to growth and metastasis promoter
through TMEPAI/PMEPA1 in triple negative breast cancer. Genes
Cancer. 10:134–149. 2019.PubMed/NCBI
|
43
|
Zhang B, Wang L, Ji X, Zhang S, Sik A, Liu
K and Jin M: Anti-inflammation associated protective mechanism of
berberine and its derivatives on attenuating
pentylenetetrazole-induced seizures in zebrafish. J Neuroimmune
Pharmacol. 15:309–325. 2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lv W, Wang J and Zhang S: Effects of
cisatracurium on epithelial-to-mesenchymal transition in esophageal
squamous cell carcinoma. Oncol Lett. 18:5325–5331. 2019.PubMed/NCBI
|
45
|
Wei CY, Tan QX, Zhu X, Qin QH, Zhu FB, Mo
QG and Yang WP: Expression of CDKN1A/p21 and TGFBR2 in breast
cancer and their prognostic significance. Int J Clin Exp Pathol.
8:14619–14629. 2015.PubMed/NCBI
|
46
|
Wu DM, Zhang T, Liu YB, Deng SH, Han R,
Liu T, Li J and Xu Y: The PAX6-ZEB2 axis promotes metastasis and
cisplatin resistance in non-small cell lung cancer through PI3K/AKT
signaling. Cell Death Dis. 10:3492019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Mercatali L, La Manna F, Groenewoud A,
Casadei R, Recine F, Miserocchi G, Pieri F, Liverani C, Bongiovanni
A, Spadazzi C, et al: Development of a patient-derived xenograft
(PDX) of breast cancer bone metastasis in a zebrafish model. Int J
Mol Sci. 17:13752016. View Article : Google Scholar
|
48
|
Huang Z, Duan H and Li H: Identification
of gene expression pattern related to breast cancer survival using
integrated TCGA datasets and genomic tools. Biomed Res Int.
2015:8785462015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Scimeca M, Urbano N, Bonfiglio R, Duggento
A, Toschi N, Schillaci O and Bonanno E: Novel insights into breast
cancer progression and metastasis: A multidisciplinary opportunity
to transition from biology to clinical oncology. Biochim Biophys
Acta Rev Cancer. 1872:138–148. 2019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Micalizzi DS, Christensen KL, Jedlicka P,
Coletta RD, Barón AE, Harrell JC, Horwitz KB, Billheimer D,
Heichman KA, Welm AL, et al: The Six1 homeoprotein induces human
mammary carcinoma cells to undergo epithelial-mesenchymal
transition and metastasis in mice through increasing TGF-beta
signaling. J Clin Invest. 119:2678–2690. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Lacroix M and Leclercq G: Relevance of
breast cancer cell lines as models for breast tumours: An update.
Breast Cancer Res Treat. 83:249–289. 2004. View Article : Google Scholar : PubMed/NCBI
|
52
|
Katsuno Y, Lamouille S and Derynck R:
TGF-β signaling and epithelial-mesenchymal transition in cancer
progression. Curr Opin Oncol. 25:76–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Sadek KW, Haik MY, Ashour AA, Baloch T,
Aboulkassim T, Yasmeen A, Vranic S, Zeidan A and Al Moustafa AE:
Water-pipe smoking promotes epithelial-mesenchymal transition and
invasion of human breast cancer cells via ERK1/ERK2 pathways.
Cancer Cell Int. 18:1802018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Patrick AN, Cabrera JH, Smith AL, Chen XS,
Ford HL and Zhao R: Structure-function analyses of the human
SIX1-EYA2 complex reveal insights into metastasis and BOR syndrome.
Nat Struct Mol Biol. 20:447–453. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Iwanaga R, Wang CA, Micalizzi DS, Harrell
JC, Jedlicka P, Sartorius CA, Kabos P, Farabaugh SM, Bradford AP
and Ford HL: Expression of Six1 in luminal breast cancers predicts
poor prognosis and promotes increases in tumor initiating cells by
activation of extracellular signal-regulated kinase and
transforming growth factor-beta signaling pathways. Breast Cancer
Res. 14:R1002012. View Article : Google Scholar : PubMed/NCBI
|
56
|
McCoy EL, Iwanaga R, Jedlicka P, Abbey NS,
Chodosh LA, Heichman KA, Welm AL and Ford HL: Six1 expands the
mouse mammary epithelial stem/progenitor cell pool and induces
mammary tumors that undergo epithelial-mesenchymal transition. J
Clin Invest. 119:2663–2677. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhao F, Wang M, Li S, Bai X, Bi H, Liu Y,
Ao X, Jia Z and Wu H: DACH1 inhibits SNAI1-mediated
epithelial-mesenchymal transition and represses breast carcinoma
metastasis. Oncogenesis. 4:e1432015. View Article : Google Scholar : PubMed/NCBI
|
58
|
Micalizzi DS, Wang CA, Farabaugh SM,
Schiemann WP and Ford HL: Homeoprotein Six1 increases TGF-beta type
I receptor and converts TGF-beta signaling from suppressive to
supportive for tumor growth. Cancer Res. 70:10371–10380. 2010.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Pappu KS and Mardon G: Genetic control of
retinal specification and determination in Drosophila. Int J Dev
Biol. 48:913–924. 2004. View Article : Google Scholar : PubMed/NCBI
|
60
|
Hoshiyama D, Iwabe N and Miyata T:
Evolution of the gene families forming the Pax/Six regulatory
network: Isolation of genes from primitive animals and molecular
phylogenetic analyses. FEBS Lett. 581:1639–1643. 2007. View Article : Google Scholar : PubMed/NCBI
|
61
|
Buck MB and Knabbe C: TGF-beta signaling
in breast cancer. Ann N Y Acad Sci. 1089:119–126. 2006. View Article : Google Scholar : PubMed/NCBI
|
62
|
Taylor MA, Lee YH and Schiemann WP: Role
of TGF-β and the tumor microenvironment during mammary
tumorigenesis. Gene Expr. 15:117–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
63
|
Imamura T, Hikita A and Inoue Y: The roles
of TGF-β signaling in carcinogenesis and breast cancer metastasis.
Breast Cancer. 19:118–124. 2012. View Article : Google Scholar : PubMed/NCBI
|
64
|
Oft M, Heider KH and Beug H: TGFbeta
signaling is necessary for carcinoma cell invasiveness and
metastasis. Curr Biol. 8:1243–1252. 1998. View Article : Google Scholar : PubMed/NCBI
|
65
|
Khoshakhlagh M, Soleimani A, Binabaj MM,
Avan A, Ferns GA, Khazaei M and Hassanian SM: Therapeutic potential
of pharmacological TGF-β signaling pathway inhibitors in the
pathogenesis of breast cancer. Biochem Pharmacol. 164:17–22. 2019.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Shubham K and Mishra R: Pax6 interacts
with SPARC and TGF-β in murine eyes. Mol Vis. 18:951–956.
2012.PubMed/NCBI
|
67
|
Bhinge A, Poschmann J, Namboori SC, Tian
X, Jia Hui Loh S, Traczyk A, Prabhakar S and Stanton LW: miR-135b
is a direct PAX6 target and specifies human neuroectoderm by
inhibiting TGF-β/BMP signaling. EMBO J. 33:1271–1283. 2014.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Rojas A, Padidam M, Cress D and Grady WM:
TGF-beta receptor levels regulate the specificity of signaling
pathway activation and biological effects of TGF-beta. Biochim
Biophys Acta. 1793:1165–1173. 2009. View Article : Google Scholar : PubMed/NCBI
|
69
|
Xie F, Ling L, van Dam H, Zhou F and Zhang
L: TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin
(Shanghai). 50:121–132. 2018. View Article : Google Scholar : PubMed/NCBI
|
70
|
Valastyan S and Weinberg RA: Tumor
metastasis: Molecular insights and evolving paradigms. Cell.
147:275–292. 2011. View Article : Google Scholar : PubMed/NCBI
|
71
|
De Craene B and Berx G: Regulatory
networks defining EMT during cancer initiation and progression. Nat
Rev Cancer. 13:97–110. 2013. View Article : Google Scholar : PubMed/NCBI
|