Mechanistic investigations of antitumor activity of a Rhodamine B‑oleanolic acid derivative bioconjugate
Corrigendum in: /10.3892/or.2021.7981
- Authors:
- Ioana Macașoi
- Ioana Zinuca Pavel
- Alina Elena Moacă
- Ștefana Avram
- Vlad Laurențiu David
- Dorina Coricovac
- Alexandra Mioc
- Demetrios A. Spandidos
- Aristidis Tsatsakis
- Codruța Șoica
- Victor Dumitrașcu
- Cristina Dehelean
-
Affiliations: Department of Toxicology and Drug Industry, Faculty of Pharmacy, ‘Victor Babes’, University of Medicine and Pharmacy, 300041 Timisoara, Romania, Department of Pharmacognosy, Faculty of Pharmacy, ‘Victor Babes’, University of Medicine and Pharmacy, 300041 Timisoara, Romania, Department of Pediatric Surgery and Orthopedics, Faculty of Medicine, ‘Victor Babes’, University of Medicine and Pharmacy, 300041 Timisoara, Romania, Department of Anatomy, Physiology and Pathophysiology, Faculty of Pharmacy, ‘Victor Babes’, University of Medicine and Pharmacy, 300041 Timisoara, Romania, Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece, Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ‘Victor Babes’, University of Medicine and Pharmacy, 300041 Timisoara, Romania, Department of Pharmacology, Faculty of Medicine, ‘Victor Babes’, University of Medicine and Pharmacy, 300041 Timisoara, Romania - Published online on: June 26, 2020 https://doi.org/10.3892/or.2020.7666
- Pages: 1169-1183
-
Copyright: © Macașoi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O and Bray F: Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 103:356–387. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M and Schellongowski P; Intensive Care in Hematological and Oncological Patients (iCHOP) Collaborative Group, : New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 21:892017. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Liu M and Li D: Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis. Mol Cell Biochem. 400:1–7. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Yang C, Guo C, Li X, Yang N, Zhao L, Hang H, Liu S, Chu P, Sun Z, et al: SZC015, a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MCF-7 breast cancer cells. Chem Biol Interact. 244:94–104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wei L, Shen A, Chu J, Lin J and Peng J: Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth. Int J Oncol. 47:2247–2254. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oprean C, Ivan A, Bojin F, Cristea M, Soica C, Drăghia L, Caunii A, Paunescu V and Tatu C: Selective in vitro anti-melanoma activity of ursolic and oleanolic acids. Toxicol Mech Methods. 28:148–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Bai H, Zhang X, Liu J, Cao P, Liao N, Zhang W, Wang Z and Hai C: Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis. 34:1323–1330. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim GJ, Jo HJ, Lee KJ, Choi JW and An JH: Oleanolic acid induces p53-dependent apoptosis via the ERK/JNK/AKT pathway in cancer cell lines in prostatic cancer xenografts in mice. Oncotarget. 9:26370–26386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mu DW, Guo HQ, Zhou GB, Li JY and Su B: Oleanolic acid suppresses the proliferation of human bladder cancer by Akt/mTOR/S6K and ERK1/2 signaling. Int J Clin Exp Pathol. 8:13864–13870. 2015.PubMed/NCBI | |
Senthilkumar PK, Kandhavelu M and Reetha D: Antioxidant properties of the oleanolic acid isolated from Cassia auriculata (Linn). J Pharm Res Clin Pract. 4:30–36. 2014. | |
Sohn KH, Lee HY, Chung HY, Young HS, Yi SY and Kim KW: Anti-angiogenic activity of triterpene acids. Cancer Lett. 94:213–218. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sommerwerk S, Heller L, Kerzig C, Kramell AE and Csuk R: Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. Eur J Med Chem. 127:1–9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Salvador JAR, Leal AS, Valdeira AS, Gonçalves BMF, Alho DPS, Figueiredo SAC, Silvestre SM and Mendes VIS: Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem. 142:95–130. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pattnaik B, Lakshma Nayak V, Ramakrishna S and Venkata Mallavadhani U: Synthesis of ring-C modified oleanolic acid derivatives and their cytotoxic evaluation. Bioorg Chem. 68:152–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heller L, Knorrscheidt A, Flemming F, Wiemann J, Sommerwerk S, Pavel IZ, Al-Harrasi A and Csuk R: Synthesis and proapoptotic activity of oleanolic acid derived amides. Bioorg Chem. 68:137–151. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Zhou Y and Liu S: Optical imaging of tumors with copper-labeled rhodamine derivatives by targeting mitochondria. Theranostics. 2:988–998. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lampidis TJ, Hasin Y, Weiss MJ and Chen LB: Selective killing of carcinoma cells ‘in vitro’ by lipophilic-cationic compounds: A cellular basis. Biomed Pharmacother. 39:220–226. 1985.PubMed/NCBI | |
Johnson LV, Walsh ML and Chen LB: Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA. 77:990–994. 1980. View Article : Google Scholar : PubMed/NCBI | |
Vyas S, Zaganjor E and Haigis MC: Mitochondria and Cancer. Cell. 166:555–566. 2016. View Article : Google Scholar : PubMed/NCBI | |
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weinberg SE and Chandel NS: Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 11:9–15. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andor B, Tischer AA (Tucuina), Berceanu-Vaduva D, Lazureanu V, Cheveresan A and Poenaru M: Antimicrobial activity and cytotoxic effect on gingival cells of silver nanoparticles obtained by biosynthesis. Rev Chim. 70:781–783. 2019. View Article : Google Scholar | |
Isaia AI (Oarcea), Ienascu IMC, Andrica FM, Georgescu D, Bratosin D and Pinzaru IA: Preliminary in vitro evaluation of seven different plant extracts on A375, B164A5 and HaCat cell lines. Rev Chim. 68:1633–1636. 2016. | |
Gheorgheosu D, Jung M, Ören B, Schmid T, Dehelean C, Muntean D and Brüne B: Betulinic acid suppresses NGAL-induced epithelial-to-mesenchymal transition in melanoma. Biol Chem. 394:773–781. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ghițu A, Schwiebs A, Radeke HH, Avram S, Zupko I, Bor A, Pavel IZ, Dehelean CA, Oprean C, Bojin F, et al: A comprehensive assessment of apigenin as an antiproliferative, proapoptotic, antiangiogenic and immunomodulatory phytocompound. Nutrients. 11:8582019. View Article : Google Scholar | |
Felice F, Zambito Y, Belardinelli E, Fabiano A, Santoni T and Di Stefano R: Effect of different chitosan derivatives on in vitro scratch wound assay: A comparative study. Int J Biol Macromol. 76:236–241. 2015. View Article : Google Scholar : PubMed/NCBI | |
Petruș A, Rațiu C, Noveanu L, Lighezan R, Roșca M and Muntean DO: Assessment of mitochondrial respiration in human platelets. Revista De Chimie. 68:768–771. 2017. View Article : Google Scholar | |
Pesta D and Gnaiger E: High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 810:25–58. 2012. View Article : Google Scholar : PubMed/NCBI | |
Manzocco L, Anese M and Nicoli MC: Antioxidant properties of tea extracts as affected by processing. LWT - Food Sci Technol. 31:694–698. 1998. View Article : Google Scholar | |
Nowak-sliwinska P, Segura T and Iruela-Arispe ML: The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis. 17:779–804. 2015. View Article : Google Scholar | |
Batista-Duharte A, Jorge Murillo G, Pérez UM, Tur EN, Portuondo DF, Martínez BT, Téllez-Martínez D, Betancourt JE and Pérez O: The hen's egg test on chorioallantoic membrane: An alternative assay for the assessment of the irritating effect of vaccine adjuvants. Int J Toxicol. 35:627–633. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moacă EA, Farcaş C, Coricovac D, Avram S, Mihali CV, Drâghici GA, Loghin F, Păcurariu C and Dehelean C: Oleic acid double coated Fe3O4 nanoparticles as anti-melanoma compounds with a complex mechanism of activity - in vitro and in ovo assessment. J Biomed Nanotechnol. 15:893–909. 2019. View Article : Google Scholar : PubMed/NCBI | |
Orlikova B, Legrand N, Panning J, Dicato M and Diederich M: Anti-inflammatory and anticancer drugs from nature. Cancer Treat Res. 159:123–143. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tuorkey MJ: Cancer therapy with phytochemicals: Present and future perspectives. Biomed Environ Sci. 28:808–819. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chudzik M, Korzonek-Szlacheta I and Król W: Triterpenes as potentially cytotoxic compounds. Molecules. 20:1610–1625. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Song Q, Hu D, Zhuang X, Yu S and Teng D: Oleanolic acid induced autophagic cell death in hepatocellular carcinoma cells via PI3K/Akt/mTOR and ROS-dependent pathway. Korean J Physiol Pharmacol. 20:237–243. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lúcio KA, Rocha G da G, Monção-Ribeiro LC, Fernandes J, Takiya CM and Gattass CR: Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo. PLoS One. 6:e285962011. View Article : Google Scholar : PubMed/NCBI | |
Tokuda H, Ohigashi H, Koshimizu K and Ito Y: Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Lett. 33:279–285. 1986. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Xu Z, Wang Y, Sun B, Song Z, Yang B, Liu X, Lin Y, Peng J, Han G, et al: Anticancer effect of SZC017, a novel derivative of oleanolic acid, on human gastric cancer cells. Oncol Rep. 35:1101–1108. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Liu M, Liu H, Wang H, Wang F, Zhang Y, Han L and Lin X: Oleanolic acid arrests cell cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. J Appl Toxicol. 33:756–765. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li X, Song Y, Zhang P, Zhu H, Chen L, Xiao Y and Xing Y: Oleanolic acid inhibits cell survival and proliferation of prostate cancer cells in vitro and in vivo through the PI3K/Akt pathway. Tumour Biol. 37:7599–7613. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Li H, Chen D, Ni J, Kang Y and Wang S: Oleanolic acid induces apoptosis in human leukemia cells through caspase activation and poly(ADP-ribose) polymerase cleavage. Acta Biochim Biophys Sin (Shanghai). 39:803–809. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wiemann J, Heller L and Csuk R: Targeting cancer cells with oleanolic and ursolic acid derived hydroxamates. Bioorg Med Chem Lett. 26:907–909. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Chang J, Hao X-D, Yu J-M, Liu H-R and Sun X: Mitochondrial-targeted prodrug cancer therapy using a rhodamine B labeled fluorinated docetaxel. Eur J Pharm Biopharm. 85:(3 Pt A). 541–549. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wolfram RK, Heller L and Csuk R: Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis. Eur J Med Chem. 152:21–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wong RS: Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011. View Article : Google Scholar : PubMed/NCBI | |
Ferreira CG, Epping M, Kruyt FAE and Giaccone G: Apoptosis: Target of cancer therapy. Clin cancer Res. 8:2024–2034. 2002.PubMed/NCBI | |
Balba A and Catoi C: Tumor cell morphology. Comparative Oncology. The Publishing House of the Romanian Academy. (Bucharest). 2007. | |
Zhu YY, Huang HY and Wu YL: Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells. Mol Med Rep. 12:5012–5018. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song X, Liu CC, Hong YR and Zhu XC: Anticancer activity of novel oleanolic acid methyl ester derivative in HeLa cervical cancer cells is mediated through apoptosis induction and reactive oxygen species production. Bangladesh J Pharmacol. 10:8962015. View Article : Google Scholar | |
Martín R, Carvalho-Tavares J, Ibeas E, Hernández M, Ruiz-Gutierrez V and Nieto ML: Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res. 67:3741–3751. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Wang P, Sun Y, Jiang J, Du H, Wang Z, Duan Z, Lei H and Li H: Induction of apoptosis by an oleanolic acid derivative in SMMC-7721 human hepatocellular carcinoma cells is associated with mitochondrial dysfunction. Oncol Lett. 15:2821–2828. 2017.PubMed/NCBI | |
Pan S, Hu J, Zheng T, Liu X, Ju Y and Xu C: Oleanolic acid derivatives induce apoptosis in human leukemia K562 cell involved in inhibition of both Akt1 translocation and pAkt1 expression. Cytotechnology. 67:821–829. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reyes-Zurita FJ, Medina-O'Donnell M, Ferrer-Martin RM, Rufino-Palomares EE, Martin-Fonseca S, Rivas F, Martínez A, García-Granados A, Pérez-Jiménez A, García-Salguero L, et al: The oleanolic acid derivative, 3-O-succinyl-28-O-benzyl oleanolate, induces apoptosis in B16-F10 melanoma cells via the mitochondrial apoptotic pathway. RSC Advances. 6:93590–93601. 2016. View Article : Google Scholar | |
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N and Han J: Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol. 47:154–167. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shyu MH, Kao TC and Yen GC: Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J Agric Food Chem. 58:6110–6118. 2010. View Article : Google Scholar : PubMed/NCBI | |
Castrejón-Jiménez NS, Leyva-Paredes K, Baltierra-Uribe SL, Castillo-Cruz J, Campillo-Navarro M, Hernández-Pérez AD, Luna-Angulo AB, Chacón-Salinas R, Coral-Vázquez RM, Estrada-García I, et al: Ursolic and oleanolic acids induce mitophagy in A549 human lung cancer cells. Molecules. 24:34442019. View Article : Google Scholar | |
Terada H: Uncouplers of oxidative phosphorylation. Environ Health Perspect. 87:213–218. 1990. View Article : Google Scholar : PubMed/NCBI | |
Iglesias-Figueroa BF, Siqueiros-Cendón TS, Gutierrez DA, Aguilera RJ, Espinoza-Sánchez EA, Arévalo-Gallegos S, Varela-Ramirez A and Rascón-Cruz Q: Recombinant human lactoferrin induces apoptosis, disruption of F-actin structure and cell cycle arrest with selective cytotoxicity on human triple negative breast cancer cells. Apoptosis. 24:562–577. 2019. View Article : Google Scholar : PubMed/NCBI | |
Izyumov DS, Avetisyan AV, Pletjushkina OY, Sakharov DV, Wirtz KW, Chernyak BV and Skulachev VP: ‘Wages of fear’: Transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim Biophys Acta. 1658:141–147. 2004. View Article : Google Scholar : PubMed/NCBI | |
Potter M, Newport E and Morten KJ: The Warburg effect: 80 years on. Biochem Soc Trans. 44:1499–1505. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M and Liang X: The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 37:2662018. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA and Sethi G: Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 9:92019. View Article : Google Scholar | |
Mishra R, Patel H, Yuan L and Garrett JT: Role of reactive oxygen species target metastatic melanoma. Cancer Res Front. 4:101–130. 2018. View Article : Google Scholar | |
Azad N, Rojanasakul Y and Vallyathan V: Inflammation and Lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 11:1–15. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cui Y, Shi M, Zhang Q, Wang Q and Chen X: Deferoxamine promotes MDA-MB-231 cell migration and invasion through increased ROS-dependent HIF-1α accumulation. Cell Physiol Biochem. 33:1036–1046. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Quesada C, López-Biedma A and Gaforio JJ: Oleanolic acid, a compound present in grapes and olives, protects against genotoxicity in human mammary epithelial cells. Molecules. 20:13670–13688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sasikumar K, Dubey V and Ghosh AR: Oleanolic acid from black raisins, Vitis vinifera with antioxidant and antiproliferative potentials on HCT 116 colon cancer cell line. Braz J Pharm Sci. 56:562020. View Article : Google Scholar | |
Hu M and Polyak K: Microenvironmental regulation of cancer development. Curr Opin Genet Dev. 18:27–34. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nishida N, Yano H, Nishida T, Kamura T and Kojiro M: Angiogenesis in cancer. Vasc Health Risk Manag. 2:213–219. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rajabi M and Mousa SA: The role of angiogenesis in cancer treatment. Biomedicines. 5:342017. View Article : Google Scholar | |
Caunii A, Oprean C, Cristea M, Ivan A, Danciu C, Tatu C, Paunescu V, Marti D, Tzanakakis G, Spandidos DA, et al: Effects of ursolic and oleanolic on SK-MEL-2 melanoma cells: In vitro and in vivo assays. Int J Oncol. 51:1651–1660. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sogno I, Vannini N, Lorusso G, Cammarota R, Noonan DM, Generoso L, Sporn MB and Albini A: Anti-angiogenic activity of a novel class of chemopreventive compounds: oleanic acid terpenoids. Recent Results Cancer Res. 181:209–212. 2009. View Article : Google Scholar : PubMed/NCBI |