1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kaarbø M, Mikkelsen OL, Malerød L, Qu S,
Lobert VH, Akgul G, Halvorsen T, Maelandsmo GM and Saatcioglu F:
PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling
in prostate cancer cells. Cell Oncol. 32:11–27. 2010.PubMed/NCBI
|
3
|
Bhardwaj S and Varma S: Rare incidence of
tumor lysis syndrome in metastatic prostate cancer following
treatment with docetaxel. J Oncol Pharm Pract. 24:153–155. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Cai Z, Wu Y, Li Y, Ren J and Wang L: BCAR4
activates GLI2 signaling in prostate cancer to contribute to
castration resistance. Aging (Albany NY). 10:3702–3712. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang XZ, Beebe JR, Pwiti L, Bielawska A
and Smyth MJ: Aberrant sphingolipid signaling is involved in the
resistance of prostate cancer cell lines to chemotherapy. Cancer
Res. 59:5842–5848. 1999.PubMed/NCBI
|
6
|
Chen X and Yan GY: Novel human
lncRNA-disease association inference based on lncRNA expression
profiles. Bioinformatics. 29:2617–2624. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
McHugh CA, Chen CK, Chow A, Surka CF, Tran
C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, et
al: The Xist lncRNA interacts directly with SHARP to silence
transcription through HDAC3. Nature. 521:232–236. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang Q, Wan Q, Zhang L, Li Y, Zhang P, Li
D, Feng C, Yi F, Zhang L, Ding X, et al: Analysis of LncRNA
expression in cell differentiation. RNA Biol. 15:413–422. 2018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Qiu M, Xu Y, Wang J, Zhang E, Sun M, Zheng
Y, Li M, Xia W, Feng D, Yin R and Xu L: A novel lncRNA, LUADT1,
promotes lung adenocarcinoma proliferation via the epigenetic
suppression of p27. Cell Death Dis. 6:e18582015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Su M, Xiao Y, Tang J, Wu J, Ma J, Tian B,
Zhou Y, Wang H, Yang D, Liao QJ and Wang W: Role of lncRNA and EZH2
interaction/regulatory network in lung cancer. J Cancer.
9:4156–4165. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zan XY and Li L: Construction of
lncRNA-mediated ceRNA network to reveal clinically relevant lncRNA
biomarkers in glioblastomas. Oncol Lett. 17:4369–4374.
2019.PubMed/NCBI
|
12
|
Du Y, Weng XD, Wang L, Liu XH, Zhu HC, Guo
J, Ning JZ and Xiao CC: LncRNA XIST acts as a tumor suppressor in
prostate cancer through sponging miR-23a to modulate RKIP
expression. Oncotarget. 8:94358–94370. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lingadahalli S, Jadhao S, Sung YY, Chen M,
Hu L, Chen X and Cheung E: Novel lncRNA LINC00844 regulates
prostate cancer cell migration and invasion through AR signaling.
Mol Cancer Res. 15:1865–1878. 2018. View Article : Google Scholar
|
14
|
Gu P, Chen X, Xie R, Xie W, Huang L, Dong
W, Han J, Liu X, Shen J, Huang J and Lin T: A novel AR
translational regulator lncRNA LBCS inhibits castration resistance
of prostate cancer. Mol Cancer. 18:1092019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shin H, Kim Y, Kim M and Lee Y: BC200 RNA:
An emerging therapeutic target and diagnostic marker for human
cancer. Mol Cells. 41:993–999. 2018.PubMed/NCBI
|
16
|
Wu K, Xu K, Liu K, Huang J, Chen J, Zhang
J and Zhang N: Long noncoding RNA BC200 regulates cell growth and
invasion in colon cancer. Int J Biochem Cell Biol. 99:219–225.
2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao RH, Zhu CH, Li XK, Cao W, Zong H, Cao
XG and Hu HY: BC200 LncRNA a potential predictive marker of poor
prognosis in esophageal squamous cell carcinoma patients. Onco
Targets Ther. 9:2221–2226. 2016.PubMed/NCBI
|
18
|
Iacoangeli A, Adzovic L, Chen EQ, Latif
Cattie R, Soff GA and Tiedge H: Regulatory BC200 RNA in peripheral
blood of patients with invasive breast cancer. J Investig Med.
66:1055–1063. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Thole TM, Lodrini M, Fabian J, Wuenschel
J, Pfeil S, Hielscher T, Kopp-Schneider A, Heinicke U, Fulda S,
Witt Om, et al: Neuroblastoma cells depend on HDAC11 for mitotic
cell cycle progression and survival. Cell Death Dis. 8:e26352017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Byun SK, An TH, Son MJ, Lee DS, Kang HS,
Lee EW, Han BS, Kim WK, Bae KH, Oh KJ and Lee SC: HDAC11 inhibits
myoblast differentiation through repression of MyoD-dependent
transcription. Mol Cells. 40:667–676. 2017.PubMed/NCBI
|
21
|
Deubzer HE, Schier MC, Oehme I, Lodrini M,
Haendler B, Sommer A and Witt O: HDAC11 is a novel drug target in
carcinomas. Int J Cancer. 132:2200–2208. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Vaz CV, Alves MG, Marques R, Moreira PI,
Oliveira PF, Maia CJ and Socorro S: Androgen-responsive and
nonresponsive prostate cancer cells present a distinct glycolytic
metabolism profile. Int J Biochem Cell Biol. 44:2077–2084. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Pashaei E, Pashaei E, Ahmady M, Ozen M and
Aydin N: Meta-analysis of miRNA expression profiles for prostate
cancer recurrence following radical prostatectomy. PLoS One.
12:e01795432017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Guo LL, Song CH, Wang P, Dai LP, Zhang JY
and Wang KJ: Competing endogenous RNA networks and gastric cancer.
World J Gastroenterol. 21:11680–11687. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Katoh H, Qin ZS, Liu R, Wang L, Li W, Li
X, Wu L, Du Z, Lyons R, Liu CG, et al: FOXP3 orchestrates H4K16
acetylation and H3K4 trimethylation for activation of multiple
genes by recruiting MOF and causing displacement of PLU-1. Mol
Cell. 44:770–784. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Samson J, Cronin S and Dean K: BC200
(BCYRN1)-The shortest, long, non-coding RNA associated with cancer.
Noncoding RNA Res. 3:131–143. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang B, Zhang L, Cao Y, Chen S, Cao J, Wu
D, Chen J, Xiong H, Pan Z, Qiu F, et al: Overexpression of lncRNA
IGFBP4-1 reprograms energy metabolism to promote lung cancer
progression. Mol Cancer. 16:1542017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen S, Xu X, Lu S and Hu B: Long
non-coding RNA HAND2-AS1 targets glucose metabolism and inhibits
cancer cell proliferation in osteosarcoma. Oncol Lett.
18:1323–1329. 2019.PubMed/NCBI
|
31
|
Li Z, Li X, Wu S, Xue M and Chen W: Long
non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase
2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci.
105:951–955. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Leslie PL, Chao YL, Tsai YH, Ghosh SK,
Porrello A, Van Swearingen AED, Harrison EB, Cooley BC, Parker JS,
Carey LA and Pecot CV: Histone deacetylase 11 inhibition promotes
breast cancer metastasis from lymph nodes. Nat Commun. 10:41922019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bhaskara S: Histone deacetylase 11 as a
key regulator of metabolism and obesity. EBioMedicine. 35:27–28.
2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin L, Hou J, Ma F, Wang P, Liu X, Li N,
Wang J, Wang Q and Cao X: Type I IFN inhibits innate IL-10
production in macrophages through histone deacetylase 11 by
downregulating microRNA-145. J Immunol. 191:3896–3904. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Cui C, Zhai D, Cai L, Duan Q, Xie L and Yu
J: Long noncoding RNA HEIH promotes colorectal cancer tumorigenesis
via counteracting miR-939 mediated transcriptional repression of
Bcl-xL. Cancer Res Treat. 50:992–1008. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ying X, Liya Q, Feng Z, Yin W and Ji-hong
L: MiR-939 promotes the proliferation of human ovarian cancer cells
by repressing APC2 expression. Biomed Pharmacother. 71:64–69. 2015.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu H, Hu Q, D'Ercole AJ and Ye P: Histone
deacetylase 11 regulates oligodendrocyte-specific gene expression
and cell development in OL-1 oligodendroglia cells. Glia. 57:1–12.
2009. View Article : Google Scholar : PubMed/NCBI
|