1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zeng H, Zheng R, Zhang S, Zou X and Chen
W: Female breast cancer statistics of 2010 in China: Estimates
based on data from 145 population-based cancer registries. J Thorac
Dis. 6:466–470. 2014.PubMed/NCBI
|
3
|
Kakimi K, Karasaki T, Matsushita H and
Sugie T: Advances in personalized cancer immunotherapy. Breast
Cancer. 24:16–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yang Y: Cancer immunotherapy: Harnessing
the immune system to battle cancer. J Clin Invest. 125:3335–3337.
2015. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Milani A, Sangiolo D, Aglietta M and
Valabrega G: Recent advances in the development of breast cancer
vaccines. Breast Cancer (Dove Med Press). 6:159–168.
2014.PubMed/NCBI
|
6
|
van der Bruggen P, Traversari C, Chomez P,
Lurquin C, De Plaen E, Van den Eynde B, Knuth A and Boon T: A gene
encoding an antigen recognized by cytolytic T lymphocytes on a
human melanoma. Science. 254:1643–1647. 1991. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schooten E, Di Maggio A, van Bergen En
Henegouwen PMP and Kijanka MM: MAGE-A antigens as targets for
cancer immunotherapy. Cancer Treat Rev. 67:54–62. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Finn OJ: Human tumor antigens yesterday,
today, and tomorrow. Cancer Immunol Res. 5:347–354. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Adams S, Greeder L, Reich E, Shao Y,
Fosina D, Hanson N, Tassello J, Singh B, Spagnoli GC, Demaria S and
Jungbluth AA: Expression of cancer testis antigens in human
BRCA-associated breast cancers: potential targets for
immunoprevention? Cancer Immunol Immunother. 60:999–1007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Otte M, Zafrakas M, Riethdorf L,
Pichlmeier U, Löning T, Jänicke F and Pantel K: MAGE-A gene
expression pattern in primary breast cancer. Cancer Res.
61:6682–6687. 2001.PubMed/NCBI
|
11
|
Hou SY, Sang MX, Geng CZ, Liu WH, Lü WH,
Xu YY and Shan BE: Expressions of MAGE-A9 and MAGE-A11 in breast
cancer and their expression mechanism. Arch Med Res. 45:44–51.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Graff-Dubois S, Faure O, Gross DA, Alves
P, Scardino A, Chouaib S, Lemonnier FA and Kosmatopoulos K:
Generation of CTL recognizing an HLA-A*0201-restricted epitope
shared by MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 tumor
antigens: Implication in a broad-spectrum tumor immunotherapy. J
Immunol. 169:575–580. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Garrido F, Aptsiauri N, Doorduijn EM,
Garcia Lora AM and van Hall T: The urgent need to recover MHC class
I in cancers for effective immunotherapy. Curr Opin Immunol.
39:44–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Villarreal DO, Chin D, Smith MA, Luistro
LL and Snyder LA: Combination GITR targeting/PD-1 blockade with
vaccination drives robust antigen-specific antitumor immunity.
Oncotarget. 8:39117–39130. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Davila E, Kennedy R and Celis E:
Generation of antitumor immunity by cytotoxic T lymphocyte epitope
peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4
blockade. Cancer Res. 63:3281–3288. 2003.PubMed/NCBI
|
16
|
Chen X, Shao Q, Hao S, Zhao Z, Wang Y, Guo
X, He Y, Gao W and Mao H: CTLA-4 positive breast cancer cells
suppress dendritic cells maturation and function. Oncotarget.
8:13703–13715. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Emens LA: Breast cancer immunotherapy:
Facts and hopes. Clin Cancer Res. 24:511–520. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chomez P, De Backer O, Bertrand M, De
Plaen E, Boon T and Lucas S: An overview of the MAGE gene family
with the identification of all human members of the family. Cancer
Res. 61:5544–5551. 2001.PubMed/NCBI
|
19
|
De Plaen E, Arden K, Traversari C, Gaforio
JJ, Szikora JP, De Smet C, Brasseur F, van der Bruggen P, Lethé B,
Lurquin C, et al: Structure, chromosomal localization, and
expression of 12 genes of the MAGE family. Immunogenetics.
40:360–369. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Simpson AJ, Caballero OL, Jungbluth A,
Chen YT and Old LJ: Cancer/testis antigens, gametogenesis and
cancer. Nat Rev Cancer. 5:615–625. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sang M, Wang L, Ding C, Zhou X, Wang B,
Wang L, Lian Y and Shan B: Melanoma-associated antigen genes-an
update. Cancer Lett. 302:85–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Scanlan MJ, Gure AO, Jungbluth AA, Old LJ
and Chen YT: Cancer/testis antigens: An expanding family of targets
for cancer immunotherapy. Immunol Rev. 188:22–32. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ayyoub M, Scarlata CM, Hamai A, Pignon P
and Valmori D: Expression of MAGE-A3/6 in primary breast cancer is
associated with hormone receptor negative status, high histologic
grade, and poor survival. J Immunother. 37:73–76. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang F, Zhou X, Miao X, Zhang T, Hang X,
Tie R, Liu N, Tian F, Wang F and Yuan J: MAGEC2, an
epithelial-mesenchymal transition inducer, is associated with
breast cancer metastasis. Breast Cancer Res Treat. 145:23–32. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Abd-Elsalam EA and Ismaeil NA:
Melanoma-associated antigen genes: A new trend to predict the
prognosis of breast cancer patients. Med Oncol. 31:2852014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Moreno-Bost A, Szmania S, Stone K, Garg T,
Hoerring A, Szymonifka J, Shaughnessy J Jr, Barlogie B, Prentice HG
and van Rhee F: Epigenetic modulation of MAGE-A3 antigen expression
in multiple myeloma following treatment with the demethylation
agent 5-azacitidine and the histone deacetlyase inhibitor MGCD0103.
Cytotherapy. 13:618–628. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Goodyear O, Agathanggelou A,
Novitzky-Basso I, Siddique S, McSkeane T, Ryan G, Vyas P, Cavenagh
J, Stankovic T, Moss P and Craddock C: Induction of a CD8+ T-cell
response to the MAGE cancer testis antigen by combined treatment
with azacitidine and sodium valproate in patients with acute
myeloid leukemia and myelodysplasia. Blood. 116:1908–1918. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Baecher-Allan C, Brown JA, Freeman GJ and
Hafler DA: CD4+CD25 high regulatory cells in human peripheral
blood. J Immunol. 167:1245–1253. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mao H, Zhang L, Yang Y, Zuo W, Bi Y, Gao
W, Deng B, Sun J, Shao Q and Qu X: New insights of CTLA-4 into its
biological function in breast cancer. Curr Cancer Drug Targets.
10:728–736. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jaberipour M, Habibagahi M, Hosseini A,
Habibabad SR, Talei A and Ghaderi A: Increased CTLA-4 and FOXP3
transcripts in peripheral blood mononuclear cells of patients with
breast cancer. Pathol Oncol Res. 16:547–551. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ward FJ, Dahal LN, Wijesekera SK,
Abdul-Jawad SK, Kaewarpai T, Xu H, Vickers MA and Barker RN: The
soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur J
Immunol. 43:1274–1285. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Marmé FL: Immunotherapy in breast cancer.
Oncol Res Treat. 39:335–345. 2016. View Article : Google Scholar : PubMed/NCBI
|