1
|
Menon KV, Shah V and Kamath PS: The
Budd-Chiari syndrome. N Engl J Med. 350:578–585. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Martens P and Nevens F: Budd-Chiari
syndrome. United European Gastroenterol J. 3:489–500. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zanetto A, Pellone M and Senzolo M:
Milestones in the discovery of Budd-Chiari syndrome. Liver Int.
39:1180–1185. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dang X, Li L and Xu P: Research status of
Budd-Chiari syndrome in China. Int J Clin Exp Med. 7:4646–4652.
2014.PubMed/NCBI
|
5
|
Yuan W, Qian M, Li ZX, Zhao CL, Zhao J and
Xiao JR: Endothelin-1 activates the notch signaling pathway and
promotes tumorigenesis in giant cell tumor of the spine. Spine
(Phila Pa 1976). 44:E1000–E1009. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tsao CJ, Pandolfi L, Wang X, Minardi S,
Lupo C, Evangelopoulos M, Hendrickson T, Shi A, Storci G, Taraballi
F and Tasciotti E: Electrospun patch functionalized with
nanoparticles allows for spatiotemporal release of VEGF and PDGF-BB
promoting in vivo neovascularization. ACS Appl Mater Interfaces.
10:44344–44353. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Qiao SS, Dang XW, Xu DQ, Wu Y, Li J, Zhang
HX, Chen KS, Xu PQ and Zhang SJ: Morphological features of
pathological membrane of inferior vena cava associated with
Budd-Chiari syndrome. Chin J Exp Sur. 29:1598–1600. 2012.
|
8
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kontomanolis EN and Koukourakis MI:
MicroRNA: The potential regulator of endometrial carcinogenesis.
Microrna. 4:18–25. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Urbich C, Kuehbacher A and Dimmeler S:
Role of microRNAs in vascular diseases, inflammation, and
angiogenesis. Cardiovasc Res. 79:581–588. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hwang HW and Mendell JT: MicroRNAs in cell
proliferation, cell death, and tumorigenesis. Br J Cancer. 96
(Suppl):R40–R44. 2007.PubMed/NCBI
|
12
|
Sun GX, Su Y, Li Y, Zhang YF, Xu LC, Zu
MH, Huang SP, Zhang JP and Lu ZJ: Circulating microRNA profile in
patients with membranous obstruction of the inferior vena cava. Exp
Ther Med. 11:811–817. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Enright AJ, John B, Gaul U, Tuschl T,
Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol.
5:R12003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yoshitomi Y, Ikeda T, Saito H, Yoshitake
Y, Ishigaki Y, Hatta T, Kato N and Yonekura H: JunB regulates
angiogenesis and neurovascular parallel alignment in mouse
embryonic skin. J Cell Sci. 130:916–926. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zou Y, Li Q, Xu Y, Yu X, Zuo Q, Huang S,
Chu Y, Jiang Z and Sun L: Promotion of trophoblast invasion by
lncRNA MVIH through inducing Jun-B. J Cell Mol Med. 22:1214–1223.
2018.PubMed/NCBI
|
17
|
Sadri D, Farhadi S and Nourmohamadi P:
Angiogenesis in odontogenic keratocyst and dentigerous cyst:
Evaluation of JunB and VEGF expression. Dent Res J (Isfahan).
16:327–332. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dang XW, Xu PQ, Ma XX, Xu DQ, Zhu YJ and
Zhang YS: Surgical treatment of Budd-Chiari syndrome: Analysis of
221 cases. Hepatobiliary Pancreat Dis Int. 10:435–438. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li SL, Zu MH and Lu ZJ: A review on the
research status and trends of Budd-Chiari syndrome. Zhonghua Liu
Xing Bing Xue Za Zhi. 31:1192–1195. 2010.(In Chinese). PubMed/NCBI
|
20
|
Wang ZG, Zhang FJ, Yi MQ and Qiang LX:
Evolution of management for Budd-Chiari syndrome: A team's view
from 2564 patients. ANZ J Surg. 75:55–63. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Qi XS, Guo XZ and Fan DM: Difference in
Budd-Chiari syndrome between the West and China. Hepatology.
62:6562015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Riemens SC, Haagsma EB, Kok T, Gouw AS and
van der Jagt EJ: Familial occurrence of membranous obstruction of
the inferior vena cava: Arguments in favor of a congenital
etiology. J Hepatol. 22:404–409. 1995. View Article : Google Scholar : PubMed/NCBI
|
23
|
Teng F, Zu MH and Hua QJ: Correlations of
iodide ions with vascular endothelial growth factor and its
receptors during the proliferation of vascular endothelial cells.
Genet Mol Res. 13:6439–6447. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Carmeliet P and Jain RK: Molecular
mechanisms and clinical applications of angiogenesis. Nature.
473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chamorro-Jorganes A, Lee MY, Araldi E,
Landskroner-Eiger S, Fernández-Fuertes M, Sahraei M, Quiles Del Rey
M, van Solingen C, Yu J, Fernández-Hernando C, et al: VEGF-induced
expression of miR-17-92 cluster in endothelial cells is mediated by
ERK/ELK1 activation and regulates angiogenesis. Circ Res.
118:38–47. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ferrara N, Gerber HP and LeCouter J: The
biology of VEGF and its receptors. Nat Med. 9:669–676. 2003.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Shibuya M: Vascular endothelial growth
factor and its receptor system: Physiological functions in
angiogenesis and pathological roles in various diseases. J Biochem.
153:13–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim S, Jun JH, Kim J, Kim DW, Jang YH, Lee
WJ, Chung HY and Lee SJ: HIF-1α and VEGF expression correlates with
thrombus remodeling in cases of intravascular papillary endothelial
hyperplasia. Int J Clin Exp Pathol. 6:2912–2918. 2013.PubMed/NCBI
|
29
|
Zhou XL, Wu JH, Wang XJ and Guo FJ:
Integrated microRNA-mRNA analysis revealing the potential roles of
microRNAs in tongue squamous cell cancer. Mol Med Rep. 12:885–894.
2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hao Y, Yang J, Yin S, Zhang H, Fan Y, Sun
C, Gu J and Xi JJ: The synergistic regulation of VEGF-mediated
angiogenesis through miR-190 and target genes. RNA. 20:1328–1336.
2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen L, Li ZY, Xu SY, Zhang XJ, Zhang Y,
Luo K and Li WP: Upregulation of miR-107 inhibits glioma
angiogenesis and VEGF expression. Cell Mol Neurobiol. 36:113–120.
2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li X, Zhang J, Gao L, McClellan S, Finan
MA, Butler TW, Owen LB, Piazza GA and Xi Y: MiR-181 mediates cell
differentiation by interrupting the Lin28 and let-7 feedback
circuit. Cell Death Differ. 19:378–386. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu XD, Cai F, Liu L, Zhang Y and Yang AL:
MicroRNA-210 is involved in the regulation of postmenopausal
osteoporosis through promotion of VEGF expression and osteoblast
differentiation. Biol Chem. 396:339–347. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jiang FS, Tian SS, Lu JJ, Ding XH, Qian
CD, Ding B, Ding ZS and Jin B: Cardamonin regulates miR-21
expression and suppresses angiogenesis induced by vascular
endothelial growth factor. Biomed Res Int. 2015:5015812015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Mei H, Lin ZY and Tong QS: The roles of
microRNAs in neuroblastoma. World J Pediatr. 10:10–16. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Su YF, Zang YF, Wang YH and Ding YL:
MiR-19-3p induces tumor cell apoptosis via targeting FAS in rectal
cancer cells. Technol Cancer Res Treat. 19:15330338209179782020.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Lu H, Zhang L, Lu S, Yang D, Ye J, Li M
and Hu W: miR-25 expression is upregulated in pancreatic ductal
adenocarcinoma and promotes cell proliferation by targeting ABI2.
Exp Ther Med. 19:3384–3390. 2020.PubMed/NCBI
|
38
|
Tiwari A, Mukherjee B and Dixit M:
MicroRNA key to angiogenesis regulation: MiRNA biology and therapy.
Curr Cancer Drug Targets. 18:266–277. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yuan M, Huang LL, Chen JH, Wu J and Xu Q:
The emerging treatment landscape of targeted therapy in
non-small-cell lung cancer. Signal Transduct Target Ther. 4:612019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhao X, Hu GF, Shi YF and Xu W: Research
progress in microRNA-based therapy for gastric cancer. Onco Targets
Ther. 12:11393–11411. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ryzhov S, Biktasova A, Goldstein AE, Zhang
Q, Biaggioni I, Dikov MM and Feoktistov I: Role of JunB in
adenosine A2B receptor-mediated vascular endothelial growth factor
production. Mol Pharmacol. 85:62–73. 2014. View Article : Google Scholar : PubMed/NCBI
|