1
|
Schiffl H: Discontinuation of renal
replacement therapy in critically ill patients with severe acute
kidney injury: Predictive factors of renal function recovery. Int
Urol Nephrol. 50:1845–1851. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Xiang HL, Xue WJ, Li Y, Zheng J, Ding C,
Dou M and Wu X: C1q/TNF-related protein 6 (CTRP6) attenuates renal
ischemia-reperfusion injury through the activation of PI3K/Akt
signaling pathway. Clin Exp Pharmacol Physiol. 47:1030–1040. 2020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Feng J, Kong R, Xie L, Lu W, Zhang Y, Dong
H and Jiang H: Clemaichinenoside protects renal tubular epithelial
cells from hypoxia/reoxygenation injury in vitro through activating
the Nrf2/HO-1 signalling pathway. Clin Exp Pharmacol Physiol.
47:495–502. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bai J, Zhao J, Cui D, Wang F, Song Y,
Cheng L, Gao K, Wang J, Li L, Li S, et al: Protective effect of
hydroxysafflor yellow a against acute kidney injury via the
TLR4/NF-κB signaling pathway. Sci Rep. 8:91732018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou T and Chen YL: The functional
mechanisms of miR-30b-5p in acute lung injury in children. Med Sci
Monit. 25:40–51. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fu XD, Shen Y, Wang WL and Li X:
miR-30a-5p ameliorates spinal cord injury-induced inflammatory
responses and oxidative stress by targeting neurod 1 through
MAPK/ERK signalling. Clin Exp Pharmacol Physiol. 45:68–74. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhu S, Zhou Z, Li Z, Shao J, Jiao G, Huang
YE and Lin Y: Suppression of LINC00707 alleviates
lipopolysaccharide-induced inflammation and apoptosis in PC-12
cells by regulated miR-30a-5p/neurod 1. Biosci Biotechnol Biochem.
83:2049–2056. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
O'Brien PJ, Slaughter MR, Polley SR and
Kramer K: Advantages of glutamate dehydrogenase as a blood
biomarker of acute hepatic injury in rats. Lab Anim. 36:313–321.
2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mastorodemos V, Kotzamani D, Zaganas I,
Arianoglou G, Latsoudis H and Plaitakis A: Human GLUD1 and GLUD2
glutamate dehydrogenase localize to mitochondria and endoplasmic
reticulum. Biochem Cell Biol. 87:505–516. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Spanaki C, Kotzamani D, Petraki Z, Drakos
E and Plaitakis A: Expression of human GLUD1 and GLUD2 glutamate
dehydrogenases in steroid producing tissues. Mol Cell Endocrinol.
415:1–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong
ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al: Ginsenoside Rg1
protects rat cardiomyocyte from hypoxia/reoxygenation oxidative
injury via antioxidant and intracellular calcium homeostasis. J
Cell Biochem. 108:117–124. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dong G, Chen T, Ren X, Zhang Z, Huang W,
Liu L, Luo P and Zhou H: Rg1 prevents myocardial
hypoxia/reoxygenation injury by regulating mitochondrial dynamics
imbalance via modulation of glutamate dehydrogenase and mitofusin
2. Mitochondrion. 26:7–18. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real- time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Habig WH, Pabst MJ and Jakoby WB:
Glutathione S-transferases. The first enzymatic step in mercapturic
acid formation. J Biol Chem. 249:7130–7139. 1974.PubMed/NCBI
|
15
|
Aviram M, Kent UM and Hollenberg PF:
Microsomal cytochromes P450 catalyze the oxidation of low density
lipoprotein. Atherosclerosis. 143:253–260. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang S, Li R, Dong W, Yang H, Zhang L,
Chen Y, Wang W, Li C, Wu Y, Ye Z, et al: RIPK3 mediates renal
tubular epithelial cell apoptosis in endotoxin-induced acute kidney
injury. Mol Med Rep. 20:1613–1620. 2019.PubMed/NCBI
|
17
|
Yang L, Chang B, Guo Y, Wu X and Liu L:
The role of oxidative stress-mediated apoptosis in the pathogenesis
of uric acid nephropathy. Ren Fail. 41:616–622. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wei W, Yang Y, Cai J, Cui K, Li RX, Wang
H, Shang X and Wei D: miR-30a-5p suppresses tumor metastasis of
human colorectal cancer by targeting ITGB3. Cell Physiol Biochem.
39:1165–1176. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xiong J, Wei B, Ye Q and Liu W:
miR-30a-5p/UBE3C axis regulates breast cancer cell proliferation
and migration. Biochem Biophys Res Commun. 516:1013–1018. 2019.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang X, Wang K, Han L, Zhang A, Shi Z,
Zhang K, Zhang H, Yang S, Pu P, Shen C, et al: PRDM1 is directly
targeted by miR-30a-5p and modulates the Wnt/β-catenin pathway in a
Dkk1-dependent manner during glioma growth. Cancer Lett.
331:211–219. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hensley CT, Wasti AT and DeBerardinis RJ:
Glutamine and cancer: Cell biology, physiology, and clinical
opportunities. J Clin Invest. 123:3678–3684. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang
JL, Zou TH, Sun DF, Gao QY, Chen YX and Fang JY: Sirtuin5
contributes to colorectal carcinogenesis by enhancing
glutaminolysis in a deglutarylation-dependent manner. Nat Commun.
9:5452018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Palladino AA and Stanley CA: The
hyperinsulinism/hyperammonemia syndrome. Rev Endocr Metab Disord.
11:171–178. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Frederiks WM and Marx F: Changes in
cytoplasmic and mitochondrial enzymes in rat liver after ischemia
followed by reperfusion. Exp Mol Pathol. 47:291–299. 1987.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Perrelli MG, Pagliaro P and Penna C:
Ischemia/reperfusion injury and cardioprotective mechanisms: Role
of mitochondria and reactive oxygen species. World J Cardiol.
3:186–200. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng
YL, Cheng PW, Li CY and Li CJ: Current mechanistic concepts in
ischemia and reperfusion injury. Cell Physiol Biochem.
46:1650–1667. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Granger DN and Kvietys PR: Reperfusion
injury and reactive oxygen species: The evolution of a concept.
Redox Biol. 6:524–551. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wu MM, Chiou HY, Wang TW, Hsueh YM, Wang
IH, Chen CJ and Lee TC: Association of blood arsenic levels with
increased reactive oxidants and decreased antioxidant capacity in a
human population of northeastern Taiwan. Environ Health Perspect.
109:1011–1017. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang W, Wang X, Zhang XS and Liang CZ:
Cryptotanshinone attenuates oxidative stress and inflammation
through the regulation of Nrf-2 and NF-KB in mice with unilateral
ureteral obstruction. Basic Clin Pharmacol Toxicol. 123:714–720.
2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fu X, Shen Y, Wang W and Li X: miR-30a-5p
ameliorates spinal cord injury-induced inflammatory responses and
oxidative stress by targeting neurod 1 through MAPK/ERK signalling.
Clin Exp Pharmacol Physiol. 45:68–74. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sun Y, Xun L, Jin G and Shi L: Salidroside
protects renal tubular epithelial cells from hypoxia/reoxygenation
injury in vitro. J Pharmacol Sci. 137:170–176. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ye S, Zhu Y, Ming Y, She X, Liu H and Ye
Q: Glycyrrhizin protects mice against renal ischemia-reperfusion
injury through inhibition of apoptosis and inflammation by
downregulating p38 mitogen-activated protein kinase signaling. Exp
Ther Med. 7:1247–1252. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang Y, Ai L, Hai B, Cao Y, Li R, Li H and
Li Y: Tempol alleviates chronic intermittent hypoxia-induced
pancreatic injury through repressing inflammation and apoptosis.
Physiol Res. 68:445–455. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Shrivastava A, Tiwari M, Sinha RA, Kumar
A, Balapure AK, Bajpai VK, Sharma R, Mitra K, Tandon A and Godbole
MM: Molecular iodine induces caspase-independent apoptosis in human
breast carcinoma cells involving the mitochondria-mediated pathway.
J Biol Chem. 281:19762–19771. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chien CT, Hsu SM, Chen CF, Lee PH and Lai
MK: Prolonged ischemia potentiates apoptosis formation during
reperfusion by increase of caspase 3 activity and free radical
generation. Transplant Proc. 32:2065–2066. 2000. View Article : Google Scholar : PubMed/NCBI
|