Attenuated measles virus overcomes radio‑ and chemoresistance in human breast cancer cells by inhibiting the non‑homologous end joining pathway
- Authors:
- Ben Yang
- Jingwei Shi
- Zhi Sun
- Dongdong Zhu
- Xuesong Xu
-
Affiliations: Department of Clinical Laboratory, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130028, P.R. China, Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130028, P.R. China, Department of Otolaryngology, Head and Neck Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130028, P.R. China - Published online on: September 16, 2020 https://doi.org/10.3892/or.2020.7768
- Pages: 2253-2264
This article is mentioned in:
Abstract
Enders G: Paramyxoviruses. Medical Microbiology. Baron S: 4th. University of Texas Medical Branch at Galveston; Galveston, TX: 1996 | |
Enders JF and Peebles TC: Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med. 86:277–286. 1954. View Article : Google Scholar : PubMed/NCBI | |
Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA and Fielding AK: Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood. 97:3746–3754. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen A, Zhang Y, Meng G, Jiang D, Zhang H, Zheng M, Xia M, Jiang A, Wu J, Beltinger C and Wei J: Oncolytic measles virus enhances antitumour responses of adoptive CD8+NKG2D+ cells in hepatocellular carcinoma treatment. Sci Rep. 7:51702017. View Article : Google Scholar : PubMed/NCBI | |
Msaouel P, Opyrchal M, Domingo Musibay E and Galanis E: Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther. 13:483–502. 2013. View Article : Google Scholar : PubMed/NCBI | |
Allen C, Opyrchal M, Aderca I, Schroeder MA, Sarkaria JN, Domingo E, Federspiel MJ and Galanis E: Oncolytic measles virus strains have significant antitumor activity against glioma stem cells. Gene Ther. 20:444–449. 2013. View Article : Google Scholar : PubMed/NCBI | |
Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, Kaur JS, Haluska PJ Jr, Aderca I, Zollman PJ, et al: Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 70:875–882. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hutzen B, Raffel C and Studebaker AW: Advances in the design and development of oncolytic measles viruses. Oncolytic Virother. 4:109–118. 2015.PubMed/NCBI | |
Iankov ID, Kurokawa CB, D'Assoro AB, Ingle JN, Domingo-Musibay E, Allen C, Crosby CM, Nair AA, Liu MC, Aderca I, et al: Inhibition of the Aurora A kinase augments the anti-tumor efficacy of oncolytic measles virotherapy. Cancer Gene Ther. 22:438–444. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patel S: Breast cancer: Lesser-known facets and hypotheses. Biomed Pharmacother. 98:499–506. 2018. View Article : Google Scholar : PubMed/NCBI | |
DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rivera E and Gomez H: Chemotherapy resistance in metastatic breast cancer: The evolving role of ixabepilone. Breast Cancer Res. 12 (Suppl 2):S22010. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Guo Y, Fu X, Wang Y, Liu Y, Huo B, Sheng J and Hu X: Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers. Onco Targets Ther. 9:21–30. 2015.PubMed/NCBI | |
Cheung-Ong K, Giaever G and Nislow C: DNA-damaging agents in cancer chemotherapy: Serendipity and chemical biology. Chem Biol. 20:648–659. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khanna A: DNA damage in cancer therapeutics: A boon or a curse? Cancer Res. 75:2133–2138. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Herman JG and Guo M: The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget. 7:37331–37346. 2016. View Article : Google Scholar : PubMed/NCBI | |
O'Connor MJ: Targeting the DNA damage response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cannan WJ and Pederson DS: Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol. 231:3–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jeggo PA and Löbrich M: DNA double-strand breaks: Their cellular and clinical impact? Oncogene. 26:7717–7719. 2007. View Article : Google Scholar : PubMed/NCBI | |
Haber JE: Partners and pathwaysrepairing a double-strand break. Trends Genet. 16:259–264. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rothkamm K, Krüger I, Thompson LH and Löbrich M: Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 23:5706–5715. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hinz JM, Yamada NA, Salazar EP, Tebbs RS and Thompson LH: Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amst). 4:782–792. 2005. View Article : Google Scholar : PubMed/NCBI | |
Duprex WP, McQuaid S, Hangartner L, Billeter MA and Rima BK: Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol. 73:9568–9575. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ramakrishnan MA: Determination of 50% endpoint titer using a simple formula. World J Virol. 5:85–86. 2016. View Article : Google Scholar : PubMed/NCBI | |
McDonald CJ, Erlichman C, Ingle JN, Rosales GA, Allen C, Greiner SM, Harvey ME, Zollman PJ, Russell SJ and Galanis E: A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res Treat. 99:177–184. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Fu X, Huo B, Wang Y, Sun J, Meng L, Hao T, Zhao ZJ and Hu X: GATA2 regulates GATA1 expression through LSD1-mediated histone modification. Am J Transl Res. 8:2265–2274. 2016.PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Fu X, Jin Y, Sun J, Liu Y, Huo B, Li X and Hu X: Histone demethylase LSD1-mediated repression of GATA-2 is critical for erythroid differentiation. Drug Des Devel Ther. 9:3153–3162. 2015.PubMed/NCBI | |
Meng Y, Chen CW, Yung MMH, Sun W, Sun J, Li Z, Li J, Li Z, Zhou W, Liu SS, et al: DUOXA1-mediated ROS production promotes cisplatin resistance by activating ATR-Chk1 pathway in ovarian cancer. Cancer Lett. 428:104–116. 2018. View Article : Google Scholar : PubMed/NCBI | |
Daley JM and Sung P: 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol. 34:1380–1388. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sledge GW, Mamounas EP, Hortobagyi GN, Burstein HJ, Goodwin PJ and Wolff AC: Past, present, and future challenges in breast cancer treatment. J Clin Oncol. 32:1979–1986. 2014. View Article : Google Scholar : PubMed/NCBI | |
Russell SJ and Peng KW: Measles virus for cancer therapy. Curr Top Microbiol Immunol. 330:213–241. 2009.PubMed/NCBI | |
Laksono BM, de Vries RD, McQuaid S, Duprex WP and de Swart RL: Measles virus host invasion and pathogenesis. Viruses. 8:2102016. View Article : Google Scholar | |
Msaouel P, Iankov ID, Dispenzieri A and Galanis E: Attenuated oncolytic measles virus strains as cancer therapeutics. Curr Pharm Biotechnol. 13:1732–1741. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sugiyama T, Yoneda M, Kuraishi T, Hattori S, Inoue Y, Sato H and Kai C: Measles virus selectively blind to signaling lymphocyte activation molecule as a novel oncolytic virus for breast cancer treatment. Gene Ther. 20:338–347. 2013. View Article : Google Scholar : PubMed/NCBI | |
Noris M and Remuzzi G: Overview of complement activation and regulation. Semin Nephrol. 33:479–492. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maciejczyk A, Szelachowska J, Szynglarewicz B, Szulc R, Szulc A, Wysocka T, Jagoda E, Lage H and Surowiak P: CD46 expression is an unfavorable prognostic factor in breast cancer cases. Appl Immunohistochem Mol Morphol. 19:540–546. 2011. View Article : Google Scholar : PubMed/NCBI | |
Surowiak P, Materna V, Maciejczyk A, Kaplenko I, Spaczynski M, Dietel M, Lage H and Zabel M: CD46 expression is indicative of shorter revival-free survival for ovarian cancer patients. Anticancer Res. 26:4943–4948. 2006.PubMed/NCBI | |
Su Y, Liu Y, Behrens CR, Bidlingmaier S, Lee NK, Aggarwal R, Sherbenou DW, Burlingame AL, Hann BC, Simko JP, et al: Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight. 3:e1214972018. View Article : Google Scholar | |
Sherbenou DW, Aftab BT, Su Y, Behrens CR, Wiita A, Logan AC, Acosta-Alvear D, Hann BC, Walter P, Shuman MA, et al: Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest. 126:4640–4653. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cho YS, Do MH, Kwon SY, Moon C, Kim K, Lee K, Lee SJ, Hemmi S, Joo YE, Kim MS and Jung C: Efficacy of CD46-targeting chimeric Ad5/35 adenoviral gene therapy for colorectal cancers. Oncotarget. 7:38210–38223. 2016. View Article : Google Scholar : PubMed/NCBI | |
Geekiyanage H and Galanis E: MiR-31 and miR-128 regulates poliovirus receptor-related 4 mediated measles virus infectivity in tumors. Mol Oncol. 10:1387–1403. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carlson SK, Classic KL, Hadac EM, Dingli D, Bender CE, Kemp BJ and Russell SJ: Quantitative molecular imaging of viral therapy for pancreatic cancer using an engineered measles virus expressing the sodium-iodide symporter reporter gene. AJR Am J Roentgenol. 192:279–287. 2009. View Article : Google Scholar : PubMed/NCBI | |
Peng KW, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC and Russell SJ: Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 62:4656–4662. 2002.PubMed/NCBI | |
Shoji K, Yoneda M, Fujiyuki T, Amagai Y, Tanaka A, Matsuda A, Ogihara K, Naya Y, Ikeda F, Matsuda H, Sato H and Kai C: Development of new therapy for canine mammary cancer with recombinant measles virus. Mol Ther Oncolytics. 3:150222016. View Article : Google Scholar : PubMed/NCBI | |
Russell SJ: Replicating vectors for cancer therapy: A question of strategy. Semin Cancer Biol. 5:437–443. 1994.PubMed/NCBI | |
Delpeut S, Sisson G, Black KM and Richardson CD: Measles virus enters breast and colon cancer cell lines through a PVRL4-mediated macropinocytosis pathway. J Virol. 91:e02191–16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baldo A, Galanis E, Tangy F and Herman P: Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination. Hum Vaccin Immunother. 12:1102–1116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Phuong LK, Allen C, Peng KW, Giannini C, Greiner S, TenEyck CJ, Mishra PK, Macura SI, Russell SJ and Galanis EC: Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. 63:2462–2469. 2003.PubMed/NCBI | |
Peng KW, Frenzke M, Myers R, Soeffker D, Harvey M, Greiner S, Galanis E, Cattaneo R, Federspiel MJ and Russell SJ: Biodistribution of oncolytic measles virus after intraperitoneal administration into Ifnar-CD46Ge transgenic mice. Hum Gene Ther. 14:1565–1577. 2003. View Article : Google Scholar : PubMed/NCBI | |
Myers R, Harvey M, Kaufmann TJ, Greiner SM, Krempski JW, Raffel C, Shelton SE, Soeffker D, Zollman P, Federspiel MJ, et al: Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus macaques in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum Gene Ther. 19:690–698. 2008. View Article : Google Scholar : PubMed/NCBI | |
Myers RM, Greiner SM, Harvey ME, Griesmann G, Kuffel MJ, Buhrow SA, Reid JM, Federspiel M, Ames MM, Dingli D, et al: Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther. 82:700–710. 2007. View Article : Google Scholar : PubMed/NCBI | |
Heinzerling L, Künzi V, Oberholzer PA, Kündig T, Naim H and Dummer R: Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood. 106:2287–2294. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ruf B and Lauer UM: Assessment of current virotherapeutic application schemes: ‘hit hard and early’ versus ‘killing softly’? Mol Ther Oncolytics. 2:150182015. View Article : Google Scholar : PubMed/NCBI | |
Calton CM, Kelly KR, Anwer F, Carew JS and Nawrocki ST: Oncolytic viruses for multiple myeloma therapy. Cancers (Basel). 10:1982018. View Article : Google Scholar | |
Robinson S and Galanis E: Potential and clinical translation of oncolytic measles viruses. Expert Opin Biol Ther. 17:353–363. 2017. View Article : Google Scholar : PubMed/NCBI | |
Achard C, Surendran A, Wedge ME, Ungerechts G, Bell J and Ilkow CS: Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine. 31:17–24. 2018. View Article : Google Scholar : PubMed/NCBI | |
Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC, Cliby WA, Haluska P Jr, Long HJ, Oberg A, Aderca I, et al: Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res. 75:22–30. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robertson KA, Nalepa G, Yang FC, Bowers DC, Ho CY, Hutchins GD, Croop JM, Vik TA, Denne SC, Parada LF, et al: Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: A phase 2 trial. Lancet Oncol. 13:1218–1224. 2012. View Article : Google Scholar : PubMed/NCBI | |
Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ and Galanis E: Clinical trials with oncolytic measles virus: Current status and future prospects. Curr Cancer Drug Targets. 18:177–187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Russell SJ, Federspiel MJ, Peng KW, Tong C, Dingli D, Morice WG, Lowe V, O'Connor MK, Kyle RA, Leung N, et al: Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin Proc. 89:926–933. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gauvrit A, Brandler S, Sapede-Peroz C, Boisgerault N, Tangy F and Gregoire M: Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res. 68:4882–4892. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sishc BJ and Davis AJ: The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers (Basel). 9:812017. View Article : Google Scholar | |
Mao Z, Jiang Y, Liu X, Seluanov A and Gorbunova V: DNA repair by homologous recombination, but not by nonhomologous end joining, is elevated in breast cancer cells. Neoplasia. 11:683–691. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lees-Miller SP, Beattie TL and Tainer JA: Noncoding RNA joins Ku and DNA-PKcs for DNA-break resistance in breast cancer. Nat Struct Mol Biol. 23:509–510. 2016. View Article : Google Scholar : PubMed/NCBI |