1
|
Robinson BM and Lake RA: Advances in
malignant mesothelioma. N Engl J Med. 353:1591–1603. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Robinson BM: Malignant pleural
mesothelioma: An epidemiological perspective. Ann Cardiothorac
Surg. 1:491–496. 2012.PubMed/NCBI
|
3
|
Jamrozik E, de Klerk N and Musk AW:
Asbestos-related disease. Intern Med J. 41:372–380. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Creaney J and Robinson BW: Serum and
pleural fluid biomarkers for mesothelioma. Curr Opin Pulm Med.
15:366–370. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pass HI, Lott D, Lonardo F, Harbut M, Liu
Z, Tang N, Carbone M, Webb C and Wali A: Asbestos exposure, pleural
mesothelioma, and serum osteopontin levels. N Engl J Med.
353:1564–1573. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ren R, Yin P, Zhang Y, Zhou J, Zhou Y, Xu
R, Lin H and Huang C: Diagnostic value of fubulin-3 for malignant
leural mesothelioma: A systematic review and meta-analysis.
Oncotarget. 7:84851–84859. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang L, Zhang S, Yao J, Lowery FJ, Zhang
Q, Huang WC, Li P, Li M, Wang X, Zhang C, et al:
Microenvironment-induced PTEN loss by exosomal microRNA primes
brain metastasis outgrowth. Nature. 527:100–104. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Harazono Y, Muramatsu T, Endo H, Uzawa N,
Kawano T, Harada K, Inazawa J and Kozaki K: miR-655 Is an
EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One.
8:e627572013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou W, Fong MY, Min Y, Somlo G, Liu L,
Palomares MR, Yu Y, Chow A, O'Connor ST, Chin AR, et al:
Cancer-secreted miR-105 destroys vascular endothelial barriers to
promote metastasis. Cancer Cell. 25:501–515. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gee GV, Koestlr DC, Christensen BC,
Sugarbaker DJ, Ugolini D, Ivaldi GP, Resnick MB, Houseman EA,
Kelsey KT and Marsit CJ: Downregulated microRNAs in the
differential diagnosis of malignant pleural mesothelioma. Int J
Cancer. 127:2859–2869. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Juri A, Zanoaga O, Braicu C, Tomuleasa C,
Irimie A and Berindan-Neagoe I: A comprehensive picture of
extracellular vesicles and their contents. Molecular transfer to
cancer cells. Cancers (Basel). 12:2982020. View Article : Google Scholar
|
12
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Pegtel DM, Cosmopoulos K, Thorley-Lawson
DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD,
Würdinger T and Middeldorp JM: Functional delivery of viral miRNAs
via exosomes. Proc Natl Acad Sci USA. 107:6328–6333. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang Y, Liu D, Chen X, Li J, Li L, Bian
Z, Sun F, Lu J, Yin Y, Cai X, et al: Secreted monocytic miR-150
enhances targeted endothelial cell migration. Mol Cell. 39:133–144.
2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kosaka N, Iguchi H, Yoshioka Y, Takeshita
Y, Matsuki Y and Ochiya T: Secretory mechanisms and intercellular
transfer of microRNAs in living cells. J Biol Chem.
285:17442–17452. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yasuda M, Hanagiri T, Shigematsu Y,
Onitsuka T, Kuroda K, Baba T, Mizukami M, Ichiki Y, Uramoto H,
Takenoyama M and Yasumoto K: Identification of a tumor associated
antigen in lung cancer patients with asbestos exposure. Anticancer
Res. 30:2631–2639. 2010.PubMed/NCBI
|
17
|
Koi C, Izumi H, Kurita T, Nguyen TT,
Murakami M, Yoshiura Y, Hachisuga T and Morimoto Y: Lovastatin
induced Kruppel like factor 2 (KLF2), Kruppel like factor 6 (KLF6)
and Ras homolog family member B (RHOB) genes and preferentially led
to viability reduction of Cisplatin-resistant cells. Oncotarget.
8:106429–106442. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Morimoto Y, Izumi H, Yoshiura Y, Tomonaga
T, Oyabu T, Myojo T, Kawai K, Yatera K, Shimada M, Kubo M, et al:
Pulmonary toxicity of well-dispersed cerium oxide nanoparticles
following intratracheal instillation and inhalation. J Nanopart
Res. 17:4422015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Samadder P, Byun HS, Bittman R and Arthur
G: A fluorescent alkyllysophospholipid analog exhibits selective
cytotoxicity against the hormone-insensitive prostate cancer cell
line PC3. Anticancer Agents Med Chem. 14:528–538. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jabbari N, Akbariazar E, Feqhhi M,
Rahbarghazi R and Rezaie J: Breast cancer-derived exosomes: Tumor
progression and therapeutic agents. J Cell Physiol. 235:6345–6356.
2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Guo Y, Ji X, Liu J, Fan D, Zhou Q, Chen C,
Wang W, Wang G, Wang H, Yuan W, et al: Effects of exosomes on
pre-metastatic formation in tumors. Mol Cancer. 18:392019.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kling CM: Non-coding RNAs in breast
cancer: Intracellular and intercellular communication. Noncording
RNA. 4:402018.
|
23
|
Jayaseelan VP: Emerging role of exosomes
as promising diagnostic tool for cancer. Cancer Gene Ther.
27:395–398. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu Z, Yang Z, Dai Y, Zhu Q and Chen LA:
Update on liquid biopsy in clinical management of non-small cell
lung cancer. Onco Targets Ther. 12:5097–5109. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fortunato O, Gasparini P, Boeri M and
Sozzi G: Exo-miRNAs as a new tool for liquid biopsy in lung cancer.
Cancers (Basel). 11:8882019. View Article : Google Scholar
|
26
|
Jiang L, Gu Y, Du Y and Liu J: Exosomes:
Diagnostic biomarkers and therapeutic delivery vehicles for cancer.
Mol Pharm. 16:3333–3349. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Purushothaman A: Exosomes from cell
culture-conditioned medium: Isolation by ultracentrifugation and
characterization. Methods Mol Biol. 1952:233–244. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Skottvoll FS, Berg HE, Bjørseth K, Lund K,
Roos N, Bekhradnia S, Thiede B, Sandberg C, Vik-Mo EO,
Roberg-Larsen H, et al: Ultracentrifugation versus kit exosome
isolation: nanoLC-MS and other tools reveal similar performance
biomarkers, but also contaminations. Future Sci OA. 5:FSO3592018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Baranyai T, Herczerg K, Onódi Z, Voszka I,
Módos K, Marton N, Nagy G, Mäger I, Wood MJ, EI Andaloussi S, et
al: Isolation of exosomes from blood plasma: Qualitative and
quantitative comparison of ultracentrifugation and size exclusion
chromatography methods. PLoS One. 10:e01456862015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yokoi A, Yoshioka Y, Yamamoto Y, Ishikawa
M, Ikeda SI, Kato T, Kiyono T, Takeshita F, Kajiyama H, Kikkawa F
and Ochiya T: Malignant extracellular vesicles carrying MMP1 mRNA
facilitate peritoneal dissemination in ovarian cancer. Nat Commun.
8:144702017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang H: Matrix metalloproteinase-9
(MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent
advances. Sensors (Basel). 18:32492018. View Article : Google Scholar
|
32
|
Zhou Q, Dai J, Chen T, Dada LA, Zhang X,
Zhang W, DeCamp MM, Winn RA, Sznajder JI and Zhou G: Downregulation
of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell
EMT and invasion. Cell Signal. 38:49–59. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tsukita S, Furuse M and Itoh M:
Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol.
2:285–293. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Brennan K, Offiah G, McSherry EA and
Hopkins AM: Tight junctions: A barrier to the initiation and
progression of breast cancer? J Biomed Biotechnol. 2010:4606072010.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Georgiadis A, Tshernutter M, Bainbridge
JW, Balaggan KS, Mowat F, West EL, Munro PM, Thrasher AJ, Matter K,
Balda MS and Ali RR: The tight junction associated signalling
proteins ZO-1 and ZONAB regulate retinal pigment epithelium
homeostasis in mice. PLoS One. 5:e157302010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Itoh M and Bissell MJ: The organization of
tight junctions in epithelia: Implications for mammary gland
biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia.
8:449–462. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Martin TA and Jiang WG: Loss of tight
junction barrier function and its role in cancer metastasis.
Biochim Biophys Acta. 1788:872–891. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Polette M, Gilles C, Nawrocki-Raby B, Lohi
J, Hunziker W, Foidart JM and Birembaut P: Membrane-type 1 matrix
metalloproteinase expression is regulated by zonula occludens-1 in
human breast cancer cells. Cancer Res. 65:7691–7698. 2005.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Bard MP, Hegmans JP, Hemmes A, Luider TM,
Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA,
Hoogsteden HC and Lambrecht BN: Proteomic analysis of exosomes
isolated from human malignant pleural effusions. Am J Respir Cell
Mol Biol. 31:114–121. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Saucier D, Wajnberg G, Roy J, Beauregard
AP, Chacko S, Crapoulet N, Fournier S, Ghosh A, Lewis SM, Marrero
A, et al: Identification of a circulating miRNA signature in
extracellular vesicles collected from amyotrophic lateral sclerosis
patients. Brain Res. 1708:100–108. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ren X, Zhang H, Cong H, Wang X, Ni H, Shen
X and Ju S: Diagnostic model of serum miR-193a-5p, HE4 and CA125
improves the diagnostic efficacy of epithelium ovarian cancer.
Pathol Oncol Res. 24:739–744. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Prinsloo A, Pool R and Van Niekerk C:
Preliminary data on microRNA expression profiles in a group of
South African patients diagnosed with chronic myeloid leukaemia.
Mol Clin Oncol. 7:386–390. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fayyad-Kazan M, EIDirani R, Hamade E, EI
Majzoub R, Akl H, Bitar N, Fayyad-Kazan H and Badran B: Circulating
miR-29c, miR-30c, miR-193a-5p and miR-885-5p: Novel potential
biomarkers for HTLV-1 infection diagnosis. Infect Genet Evol.
74:1039382019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Qu A, Yang Y, Zhang X, Wang W, Liu Y,
Zheng G, Du L and Wang C: Development of a preoperative prediction
nomogram for lymph node metastasis in colorectal cancer based on a
novel serum miRNA signature and CT scans. EBioMedicine. 37:125–133.
2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Moushi A, Michalidou K, Soteriou M,
Cariolou M and Bashiardes E: MicroRNAs as possible biomarkers for
screening of aortic aneurysms: A systematic review and validation
study. Biomarkers. 23:253–264. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang Y, Yan L and Han W: Elevated level
of miR-551b-5p is associated with inflammation and disease
progression in patients with severe acute pancreatitis. Ther Apher
Dial. 22:649–655. 2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu P, Xia L, Zhang WL, Ke HJ, Su T, Deng
LB, Chen YX and Lv NH: Identification of serum microRNAs as
diagnostic and prognostic biomarkers for acute pancreatitis.
Pancreatology. 14:159–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Jiang X, Jiang M, Xu M, Xu J and Li Y:
Identification of diagnostic utility and molecular mechanisms of
circulating miR-551b-5p in gastric cancer. Pathol Res Pract.
215:900–904. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen Y, Gelfond JA, McManus LM and
Shireman PK: Reproducibility of quantitative RT-PCR array in miRNA
expression profiling and comparison with microarray analysis. BMC
Genomics. 10:4072009. View Article : Google Scholar : PubMed/NCBI
|