Circular RNAs: Novel biomarkers for cervical, ovarian and endometrial cancer (Review)
- Authors:
- Yuchuan Shi
- Runhua He
- Yu Yang
- Yu He
- Kang Shao
- Lei Zhan
- Bing Wei
-
Affiliations: Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China, Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China - Published online on: September 25, 2020 https://doi.org/10.3892/or.2020.7780
- Pages: 1787-1798
-
Copyright: © Shi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Chen LL: The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 17:205–211. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han B, Chao J and Yao H: Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther. 187:31–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I and Yarden Y: Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44:1370–1383. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R and Pils D: Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 5:80572015. View Article : Google Scholar : PubMed/NCBI | |
Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S and Wilusz JE: Combinatorial control of drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29:2168–2182. 2015. View Article : Google Scholar : PubMed/NCBI | |
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A and Mayeda A: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34:e632006. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Gu T, Bao X, Sun J, Zhao J, Zhang T and Zhang L: Circular RNA hsa_circ_0014243 may serve as a diagnostic biomarker for essential hypertension. Exp Ther Med. 17:1728–1736. 2019.PubMed/NCBI | |
Ye YL, Yin J, Hu T, Zhang LP, Wu LY and Pang Z: Increased circulating circular RNA_103516 is a novel biomarker for inflammatory bowel disease in adult patients. World J Gastroenterol. 25:6273–6288. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lei B, Tian Z, Fan W and Ni B: Circular RNA: A novel biomarker and therapeutic target for human cancers. Int J Med Sci. 16:292–301. 2019. View Article : Google Scholar : PubMed/NCBI | |
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P and Wu M: CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer. 16:942017. View Article : Google Scholar : PubMed/NCBI | |
Aufiero S, Reckman YJ, Pinto YM and Creemers EE: Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol. 16:503–514. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kong D, Piao YS, Yamashita S, Oshima H, Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y, et al: Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene. 31:3949–3960. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zhang P, Chen Z, Liu M, Li X and Tang H: MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett. 587:2247–2253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Cai K, Wang J, Wang X, Cheng K, Shi F, Jiang L, Zhang Y and Dou J: MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 32:2858–2868. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MT, Wang H, Chen J, Ng SS, Chen M, et al: microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene. 32:5078–5088. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, Liu D, Wang M, Wang L, Zeng F and Jiang G: CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 18:1646–1659. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao-Long M, Kun-Peng Z and Chun-Lin Z: Circular RNA circ_HIPK3 is down-regulated and suppresses cell proliferation, migration and invasion in osteosarcoma. J Cancer. 9:1856–1862. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Chen Y and Jiang P: Circular RNA HIPK3 exerts oncogenic properties through suppression of miR-124 in lung cancer. Biochem Biophys Res Commun. 506:455–462. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kai D, Yannian L, Yitian C, Dinghao G, Xin Z and Wu J: Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem Biophys Res Commun. 503:863–869. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z and Yang BB: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, et al: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 24:1609–1620. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI | |
Chen CY and Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268:415–417. 1995. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Molecular Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar | |
Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Siegel RL, Ward EM and Jemal A: Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang S and Batur P: Human papillomavirus in 2019: An update on cervical cancer prevention and screening guidelines. Cleve Clin J Med. 86:173–178. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yee GP, de Souza P and Khachigian LM: Current and potential treatments for cervical cancer. Curr Cancer Drug Targets. 13:205–220. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mezei AK, Armstrong HL, Pedersen HN, Campos NG, Mitchell SM, Sekikubo M, Byamugisha JK, Kim JJ, Bryan S and Ogilvie GS: Cost-effectiveness of cervical cancer screening methods in low- and middle-income countries: A systematic review. Int J Cancer. 141:437–446. 2017. View Article : Google Scholar : PubMed/NCBI | |
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI | |
Han YN, Xia SQ, Zhang YY, Zheng JH and Li W: Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget. 8:64551–64563. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng SR, Zhang HR, Zhang ZF, Lai SY, Huang LJ, Liu J, Bai X, Ding K and Zhou JY: Human papillomavirus 16 E7 oncoprotein alters the expression profiles of circular RNAs in Caski cells. J Cancer. 9:3755–3764. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao YL, Zhang MY, Xu B, Han LJ, Lan SF, Chen J, Dong YJ and Cao LL: Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis. Oncotarget. 8:86625–86633. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiao J, Zhang T, Jiao X, Huang T, Zhao L, Ma D and Cui B: hsa_circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion. J Cell Physiol. 235:1287–1295. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang L, Wang W and Guo X: Overexpression of circular RNA hsa_circ_0001038 promotes cervical cancer cell progression by acting as a ceRNA for miR-337-3p to regulate cyclin-M3 and metastasis-associated in colon cancer 1 expression. Gene. 733:1442732019. View Article : Google Scholar : PubMed/NCBI | |
Chen RX, Liu HL, Yang LL, Kang FH, Xin LP, Huang LR, Guo QF and Wang YL: Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci. 23:8771–8778. 2019.PubMed/NCBI | |
Hu C, Wang Y, Li A, Zhang J, Xue F and Zhu L: Overexpressed circ_0067934 acts as an oncogene to facilitate cervical cancer progression via the miR-545/EIF3C axis. J Cell Physiol. 234:9225–9232. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding L and Zhang H: Circ-ATP8A2 promotes cell proliferation and invasion as a ceRNA to target EGFR by sponging miR-433 in cervical cancer. Gene. 705:103–108. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Tian T, Liu X, Xia M, Chen C, Mai L, Xie S and Yu L: Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis. Biomed Pharmacother. 118:1093112019. View Article : Google Scholar : PubMed/NCBI | |
Jiao J, Jiao X, Liu Q, Qu W, Ma D, Zhang Y and Cui B: The Regulatory Role of circRNA_101308 in cervical cancer and the prediction of its mechanism. Cancer Manag Res. 12:4807–4815. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ji F, Du R, Chen T, Zhang M, Zhu Y, Luo X and Ding Y: Circular RNA circSLC26A4 accelerates cervical cancer progression via miR-1287-5p/HOXA7 axis. Mol Ther Nucleic Acids. 19:413–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
He J, Lv X and Zeng Z: A potential disease monitoring and prognostic biomarker in cervical cancer patients: The clinical application of circular RNA_0018289. J Clin Lab Anal. 34:e233402020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhao X, Zhang J, Zheng X and Li F: Circular RNA hsa_circ_0023404 exerts an oncogenic role in cervical cancer through regulating miR-136/TFCP2/YAP pathway. Biochem Biophys Res Commun. 501:428–433. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang Q, Chen Z, Zhao L and Xu H: Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging (Albany NY). 11:9982–9999. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wu Y, Wang S, Jiang J, Zhang C, Jiang Y, Wang X, Hong L and Huang H: Circ-SMARCA5 suppresses progression of multiple myeloma by targeting miR-767-5p. BMC Cancer. 19:9372019. View Article : Google Scholar : PubMed/NCBI | |
Dong C, Fan B, Ren Z, Liu B and Wang Y: CircSMARCA5 facilitates the progression of prostate cancer through miR-432/PDCD10 axis. Cancer Biother Radiopharm. 2020.(Online ahead of print). View Article : Google Scholar | |
Tian JDC and Liang L: Involvement of circular RNA SMARCA5/microRNA-620 axis in the regulation of cervical cancer cell proliferation, invasion and migration. Eur Rev Med Pharmacol Sci. 22:8589–8598. 2018.PubMed/NCBI | |
Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q and Zhang W: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 17:192018. View Article : Google Scholar : PubMed/NCBI | |
Wang ST, Liu LB, Li XM, Wang YF, Xie PJ, Li Q, Wang R, Wei Q, Kang YH, Meng R and Feng XH: Circ-ITCH regulates triple-negative breast cancer progression through the Wnt/β-catenin pathway. Neoplasma. 66:232–239. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Guo R, Liu Q, Sun J and Wang H: Circular RNA Circ-ITCH inhibits the malignant behaviors of cervical cancer by microRNA-93-5p/FOXK2 Axis. Reprod Sci. 27:860–868. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Zhang P, Xu M, Yan L, Liu N and Wu X: Circular RNA hsa_circ_0000263 participates in cervical cancer development by regulating target gene of miR-150-5p. J Cell Physiol. 234:11391–11400. 2019. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL: Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hackshaw A, Gershenson D and Ledermann J: Mucinous Ovarian Carcinoma. N Engl J Med. 381:e32019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang Q, Xu Y and Han L: Advances in the treatment of ovarian cancer using PARP inhibitors and the underlying mechanism of resistance. Current Drug Targets. 21:167–178. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hansen JM, Coleman RL and Sood AK: Targeting the tumour microenvironment in ovarian cancer. Eur J Cancer. 56:131–143. 2016. View Article : Google Scholar : PubMed/NCBI | |
Teng F, Xu J, Zhang M, Liu S, Gu Y, Zhang M, Wang X, Ni J, Qian B, Shen R and Jia X: Comprehensive circular RNA expression profiles and the tumor-suppressive function of circHIPK3 in ovarian cancer. Int J Biochem Cell Biol. 112:8–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ning L, Long B, Zhang W, Yu M, Wang S, Cao D, Yang J, Shen K, Huang Y and Lang J: Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int J Oncol. 53:2637–2646. 2018.PubMed/NCBI | |
Gao Y, Zhang C, Liu Y and Wang M: Circular RNA profiling reveals circRNA1656 as a novel biomarker in high grade serous ovarian cancer. Biosci Trends. 13:204–211. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fan CM, Wang JP, Tang YY, Zhao J, He SY, Xiong F, Guo C, Xiang B, Zhou M, Li XL, et al: circMAN1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Sci. 110:2180–2188. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pei C, Wang H, Shi C, Zhang C and Wang M: CircRNA hsa_circ_0013958 may contribute to the development of ovarian cancer by affecting epithelial-mesenchymal transition and apoptotic signaling pathways. J Clin Lab Anal. 34:e232922020. View Article : Google Scholar | |
Zou T, Wang PL, Gao Y and Liang WT: Circular RNA_LARP4 is lower expressed and serves as a potential biomarker of ovarian cancer prognosis. Eur Rev Med Pharmacol Sci. 22:7178–7182. 2018.PubMed/NCBI | |
Zhao Y, Hu Y, Shen Q, Chen Q, Zhu XJ, Jiang SS and Zhang Q: CircRNA_MYLK promotes malignant progression of ovarian cancer through regulating microRNA-652. Eur Rev Med Pharmacol Sci. 24:5281–5291. 2020.PubMed/NCBI | |
Zhang M, Xia B, Xu Y, Zhang Y, Xu J and Lou G: Circular RNA (hsa_circ_0051240) promotes cell proliferation, migration and invasion in ovarian cancer through miR-637/KLK4 axis. Artif Cells Nanomed Biotechnol. 47:1224–1233. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ye X, Xia X and Lin X: Circular RNA ABCB10 correlates with advanced clinicopathological features and unfavorable survival, and promotes cell proliferation while reduces cell apoptosis in epithelial ovarian cancer. J Nurs Scholarsh. 26:151–161. 2019. | |
Zhao Y, Qin XP, Lang YP, Kou D and Shao ZW: Circular RNA circ-SMAD7 promoted ovarian cancer cell proliferation and metastasis by suppressing KLF6. Eur Rev Med Pharmacol Sci. 23:5603–5610. 2019.PubMed/NCBI | |
Bao L, Zhong J and Pang L: Upregulation of Circular RNA VPS13C-has-circ-001567 promotes ovarian cancer cell proliferation and invasion. Cancer Biother Radiopharm. 34:110–118. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Mao M, Jiang J, Zhu D and Li P: Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression. Onco Targets Ther. 12:3869–3879. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Jin Y, Hu Q, Cheng S, Wang C, Yang Z and Wang Y: Circular RNA hsa_circ_0078607 suppresses ovarian cancer progression by regulating miR-518a-5p/Fas signaling pathway. J Ovarian Res. 13:642020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lin S, Mo Z, Jiang J, Tang H, Wu C and Song J: CircRNA_100395 inhibits cell proliferation and metastasis in ovarian cancer via regulating miR-1228/p53/epithelial-mesenchymal transition (EMT) axis. J Cancer. 11:599–609. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wang J, Zhang X and Liu G: Serum circSETDB1 is a promising biomarker for predicting response to platinum-taxane-combined chemotherapy and relapse in high-grade serous ovarian cancer. Onco Targets Ther. 12:7451–7457. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Ji M, Wang Q, He N and Li Y: Circular RNA Cdr1as upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol Ther Nucleic Acids. 18:24–33. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lortet-Tieulent J, Ferlay J, Bray F and Jemal A: International patterns and trends in endometrial cancer incidence, 1978–2013. J Natl Cancer Inst. 110:354–361. 2018. View Article : Google Scholar : PubMed/NCBI | |
McAlpine JN, Temkin SM and Mackay HJ: Endometrial cancer: Not your grandmother's cancer. Cancer. 122:2787–2798. 2016. View Article : Google Scholar : PubMed/NCBI | |
Braun MM, Overbeek-Wager EA and Grumbo RJ: Diagnosis and management of endometrial cancer. Am Fam Physician. 93:468–474. 2016.PubMed/NCBI | |
Moore K and Brewer MA: Endometrial cancer: Is this a new disease? Am Soc Clin Oncol Educ Book. 37:435–442. 2017. View Article : Google Scholar : PubMed/NCBI | |
Urick ME and Bell DW: Clinical actionability of molecular targets in endometrial cancer. Nat Rev Cancer. 19:510–521. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bokhman JV: Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 15:10–17. 1983. View Article : Google Scholar : PubMed/NCBI | |
Suarez AA, Felix AS and Cohn DE: Bokhman Redux: Endometrial cancer ‘types’ in the 21st century. Gynecol Oncol. 144:243–249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, et al: Integrated genomic characterization of endometrial carcinoma. Nature. 497:67–73. 2013. View Article : Google Scholar : PubMed/NCBI | |
Colombo N, Creutzberg C, Amant F, Bosse T, González-Martín A, Ledermann J, Marth C, Nout R, Querleu D, Mirza MR, et al: ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up. Ann Oncol. 27:16–41. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Tang QL, Ma F, Cai L, Chen M, Ran XX, Wang XY and Jiang XF: Analysis of the circular RNA transcriptome in the grade 3 endometrial cancer. Cancer Manag Res. 11:6215–6227. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Gong Z, Shen Y, Fang Y and Zhong S: Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 10:187–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen BJ, Byrne FL, Takenaka K, Modesitt SC, Olzomer EM, Mills JD, Farrell R, Hoehn KL and Janitz M: Analysis of the circular RNA transcriptome in endometrial cancer. Oncotarget. 9:5786–5796. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Douglas W, Lia M, Edelmann W, Kucherlapati R, Podsypanina K, Parsons R and Ellenson LH: DNA mismatch repair deficiency accelerates endometrial tumorigenesis in Pten heterozygous mice. Am J Pathol. 160:1481–1486. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB and Mak TW: High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/- mice. Cancer Res. 60:3605–3611. 2000.PubMed/NCBI | |
Liu Y, Chen S, Zong ZH, Guan X and Zhao Y: CircRNA WHSC1 targets the miR-646/NPM1 pathway to promote the development of endometrial cancer. J Cell Mol Med. 24:6898–6907. 2020. View Article : Google Scholar : PubMed/NCBI |