1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rawla P, Sunkara T and Gaduputi V:
Epidemiology of pancreatic cancer: Global trends, etiology and risk
factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Carreras-Torres R, Johansson M, Gaborieau
V, Haycock PC, Wade KH, Relton CL, Martin RM, Davey Smith G and
Brennan P: The role of obesity, type 2 diabetes, and metabolic
factors in pancreatic cancer: A mendelian randomization study. J
Natl Cancer Inst. 109:djx0122017. View Article : Google Scholar
|
5
|
Lauby-Secretan B, Scoccianti C, Loomis D,
Grosse Y, Bianchini F and Straif K; International Agency for
Research on Cancer Handbook Working Group, : Body Fatness and
Cancer-Viewpoint of the IARC Working Group. N Engl J Med.
375:794–798. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wolfgang CL, Herman JM, Laheru DA, Klein
AP, Erdek MA, Fishman EK and Hruban RH: Recent progress in
pancreatic cancer. CA Cancer J Clin. 63:318–348. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ioannou N, Seddon AM, Dalgleish A,
Mackintosh D and Modjtahedi H: Expression pattern and targeting of
HER family members and IGF-IR in pancreatic cancer. Front Biosci
(Landmark Ed). 2012(17): 2698–2724. 2012. View Article : Google Scholar
|
8
|
Seshacharyulu P, Ponnusamy MP, Haridas D,
Jain M, Ganti AK and Batra SK: Targeting the EGFR signaling pathway
in cancer therapy. Expert Opin Ther Targets. 16:15–31. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tebbutt N, Pedersen MW and Johns TG:
Targeting the ERBB family in cancer: Couples therapy. Nat Rev
Cancer. 13:663–673. 2013. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Li Q, Zhang L, Li X, Yan H, Yang L, Li Y,
Li T, Wang J and Cao B: The prognostic significance of human
epidermal growth factor receptor family protein expression in
operable pancreatic cancer: HER1-4 protein expression and prognosis
in pancreatic cancer. BMC Cancer. 16:9102016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Perini MV, Montagnini AL, Coudry R,
Patzina R, Penteado S, Abdo EE, Diniz A, Jukemura J and da Cunha
JE: Prognostic significance of epidermal growth factor receptor
overexpression in pancreas cancer and nodal metastasis. ANZ J Surg.
85:174–178. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mahipal A, Mcdonald MJ, Witkiewicz A and
Carr BI: Cell membrane and cytoplasmic epidermal growth factor
receptor expression in pancreatic ductal adenocarcinoma. Med Oncol.
29:134–139. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Einama T, Ueda S, Tsuda H, Ogasawara K,
Hatsuse K, Matsubara O, Todo S and Yamamoto J: Membranous and
cytoplasmic expression of epidermal growth factor receptor in
metastatic pancreatic ductal adenocarcinoma. Exp Ther Med.
3:931–936. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Moore MJ, Goldstein D, Hamm J, Figer A,
Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, et al:
Erlotinib plus gemcitabine compared with gemcitabine alone in
patients with advanced pancreatic cancer: A phase III trial of the
National Cancer Institute of Canada clinical trials group. J Clin
Oncol. 25:1960–1966. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ioannou N, Seddon AM, Dalgleish A,
Mackintosh D and Modjtahedi H: Treatment with a combination of the
ErbB (HER) family blocker afatinib and the IGF-IR inhibitor,
NVP-AEW541 induces synergistic growth inhibition of human
pancreatic cancer cells. BMC Cancer. 13:412013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nones K, Waddell N, Song S, Patch AM,
Miller D, Johns A, Wu J, Kassahn KS, Wood D, Bailey P, et al:
Genome-wide DNA methylation patterns in pancreatic ductal
adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2
and MET signaling. Int J Cancer. 135:1110–1118. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhou W, Jubb AM, Lyle K, Xiao Q, Ong CC,
Desai R, Fu L, Gnad F, Song Q, Haverty PM, et al: PAK1 mediates
pancreatic cancer cell migration and resistance to MET inhibition.
J Pathol. 234:502–513. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhu GH, Huang C, Qiu ZJ, Liu J, Zhang ZH,
Zhao N, Feng ZZ and Lv XH: Expression and prognostic significance
of CD151, c-Met, and integrin alpha3/alpha6 in pancreatic ductal
adenocarcinoma. Dig Dis Sci. 56:1090–1098. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu C, Yang Z, Li D, Liu Z, Miao X, Yang
L, Zou Q and Yuan Y: Overexpression of B2M and loss of ALK7
expression are associated with invasion, metastasis, and
poor-prognosis of the pancreatic ductal adenocarcinoma. Cancer
Biomark. 15:735–743. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shields DJ, Murphy EA, Desgrosellier JS,
Mielgo A, Lau SK, Barnes LA, Lesperance J, Huang M, Schmedt C,
Tarin D, et al: Oncogenic Ras/Src cooperativity in pancreatic
neoplasia. Oncogene. 30:2123–2134. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nagaraj NS, Smith JJ, Revetta F,
Washington MK and Merchant NB: Targeted inhibition of SRC kinase
signaling attenuates pancreatic tumorigenesis. Mol Cancer Ther.
9:2322–2332. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Morton JP, Karim SA, Graham K, Timpson P,
Jamieson N, Athineos D, Doyle B, McKay C, Heung MY, Oien KA, et al:
Dasatinib inhibits the development of metastases in a mouse model
of pancreatic ductal adenocarcinoma. Gastroenterology. 139:292–303.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chee CE, Krishnamurthi S, Nock CJ, Meropol
NJ, Gibbons J, Fu P, Bokar J, Teston L, O'Brien T, Gudena V, et al:
Phase II study of dasatinib (BMS-354825) in patients with
metastatic adenocarcinoma of the pancreas. Oncologist.
18:1091–1092. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cros J, Raffenne J, Couvelard A and Poté
N: Tumor heterogeneity in pancreatic adenocarcinoma. Pathobiology.
85:64–71. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yao W, Maitra A and Ying H: Recent
insights into the biology of pancreatic cancer. EBioMedicine.
53:1026552020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Haeberle L, Steiger K, Schlitter AM, Safi
SA, Knoefel WT, Erkan M and Esposito I: Stromal heterogeneity in
pancreatic cancer and chronic pancreatitis. Pancreatology. May
12–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
27
|
Ioannou N, Dalgleish AG, Seddon AM,
Mackintosh D, Guertler U, Solca F and Modjtahedi H: Anti-tumour
activity of afatinib, an irreversible ErbB family blocker, in human
pancreatic tumour cells. Br J Cancer. 105:1554–1562. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Stanley A, Ashrafi GH, Seddon AM and
Modjtahedi H: Synergistic effects of various Her inhibitors in
combination with IGF-1R, C-MET and Src targeting agents in breast
cancer cell lines. Sci Rep. 7:39642017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cunningham MP, Thomas H, Fan Z and
Modjtahedi H: Responses of human colorectal tumor cells to
treatment with the anti-epidermal growth factor receptor monoclonal
antibody ICR62 used alone and in combination with the EGFR tyrosine
kinase inhibitor gefitinib. Cancer Res. 66:7708–7715. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Ioannou N, Seddon AM, Dalgleish A,
Mackintosh D, Solca F and Modjtahedi H: Acquired resistance of
pancreatic cancer cells to treatment with gemcitabine and
HER-inhibitors is accompanied by increased sensitivity to STAT3
inhibition. Int J Oncol. 48:908–918. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rahib L, Smith BD, Aizenberg R, Rosenzweig
AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and
deaths to 2030: The unexpected burden of thyroid, liver, and
pancreas cancers in the United States. Cancer Res. 74:2913–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Adel N: Current treatment landscape and
emerging therapies for pancreatic cancer. Am J Manag Care. 25 (1
Suppl):S3–S10. 2019.PubMed/NCBI
|
33
|
Parry D, Guzi T, Shanahan F, Davis N,
Prabhavalkar D, Wiswell D, Seghezzi W, Paruch K, Dwyer MP, Doll R,
et al: Dinaciclib (SCH 727965), a novel and potent cyclin-dependent
kinase inhibitor. Mol Cancer Ther. 9:2344–2353. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nemunaitis JJ, Small KA, Kirschmeier P,
Zhang D, Zhu Y, Jou YM, Statkevich P, Yao SL and Bannerji R: A
first-in-human, phase 1, dose-escalation study of dinaciclib, a
novel cyclin-dependent kinase inhibitor, administered weekly in
subjects with advanced malignancies. J Transl Med. 11:2592013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Frolov A, Schuller K, Tzeng CW, Cannon EE,
Ku BC, Howard JH, Vickers SM, Heslin MJ, Buchsbaum DJ and Arnoletti
JP: ErbB3 expression and dimerization with EGFR influence
pancreatic cancer cell sensitivity to erlotinib. Cancer Biol Ther.
6:548–554. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Buck E, Eyzaguirre A, Haley JD, Gibson NW,
Cagnoni P and Iwata KK: Inactivation of Akt by the epidermal growth
factor receptor inhibitor erlotinib is mediated by HER-3 in
pancreatic and colorectal tumor cell lines and contributes to
erlotinib sensitivity. Mol Cancer Ther. 5:2051–2059. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ware KE, Marshall ME, Heasley LR, Marek L,
Hinz TK, Hercule P, Helfrich BA, Doebele RC and Heasley LE: Rapidly
acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC
cell lines through de-repression of FGFR2 and FGFR3 expression.
PLoS One. 5:e141172010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Azuma K, Kawahara A, Sonoda K, Nakashima
K, Tashiro K, Watari K, Izumi H, Kage M, Kuwano M, Ono M and
Hoshino T: FGFR1 activation is an escape mechanism in human lung
cancer cells resistant to afatinib, a pan-EGFR family kinase
inhibitor. Oncotarget. 5:5908–5919. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Urtasun N, Vidal-Pla A, Pérez-Torras S and
Mazo A: Human pancreatic cancer stem cells are sensitive to dual
inhibition of IGF-IR and ErbB receptors. BMC Cancer. 15:2232015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Al-U'datt DGF, Al-Husein BAA and Qasaimeh
GR: A mini-review of c-Met as a potential therapeutic target in
melanoma. Biomed Pharmacother. 88:194–202. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bian C, Liu Z, Li D and Zhen L: PI3K/AKT
inhibition induces compensatory activation of the MET/STAT3 pathway
in non-small cell lung cancer. Oncol Lett. 15:9655–9662.
2018.PubMed/NCBI
|
42
|
Rahimi N, Hung W, Tremblay E, Saulnier R
and Elliott B: c-Src kinase activity is required for hepatocyte
growth factor-induced motility and anchorage-independent growth of
mammary carcinoma cells. J Biol Chem. 273:33714–33721. 1998.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Xue C, Tian Y, Zhang J, Zhao Y, Zhan J,
Fang W and Zhang L: In vitro and in vivo efficacy of afatinib as a
single agent or in combination with gemcitabine for the treatment
of nasopharyngeal carcinoma. Drug Des Devel Ther. 10:1299–1306.
2016.PubMed/NCBI
|
44
|
Garcia-Reyes B, Kretz AL, Ruff JP, von
Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D and Lemke
J: The emerging role of cyclin-dependent kinases (CDKs) in
pancreatic ductal adenocarcinoma. Int J Mol Sci. 19:32192018.
View Article : Google Scholar
|
45
|
Miao X, Koch G, Ait-Oudhia S, Straubinger
RM and Jusko WJ: Pharmacodynamic modeling of cell cycle effects for
gemcitabine and trabectedin combinations in pancreatic cancer
cells. Front Pharmacol. 7:4212016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Duong HQ, Yi YW, Kang HJ, Bae I, Jang YJ,
Kwak SJ and Seong YS: Combination of dasatinib and gemcitabine
reduces the ALDH1A1 expression and the proliferation of
gemcitabine-resistant pancreatic cancer MIA PaCa-2 cells. Int J
Oncol. 44:2132–2138. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ma L, Wei J, Su GH and Lin J: Dasatinib
can enhance paclitaxel and gemcitabine inhibitory activity in human
pancreatic cancer cells. Cancer Biol Ther. 20:855–865. 2019.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Hong DS, Choe JH, Naing A, Wheler JJ,
Falchook GS, Piha-Paul S, Moulder SL, George GC, Choe JM, Strauss
LC, et al: A phase 1 study of gemcitabine combined with dasatinib
in patients with advanced solid tumors. Invest New Drugs.
31:918–926. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Evans TRJ, Van Cutsem E, Moore MJ, Bazin
IS, Rosemurgy A, Bodoky G, Deplanque G, Harrison M, Melichar B,
Pezet D, et al: Phase 2 placebo-controlled, double-blind trial of
dasatinib added to gemcitabine for patients with locally-advanced
pancreatic cancer. Ann Oncol. 28:354–361. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cardin DB, Goff LW, Chan E, Whisenant JG,
Dan Ayers G, Takebe N, Arlinghaus LR, Yankeelov TE, Berlin J and
Merchant N: Dual Src and EGFR inhibition in combination with
gemcitabine in advanced pancreatic cancer: Phase I results: A phase
I clinical trial. Invest New Drugs. 36:442–450. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Nagaraj NS, Washington MK and Merchant NB:
Combined blockade of Src kinase and epidermal growth factor
receptor with gemcitabine overcomes STAT3-mediated resistance of
inhibition of pancreatic tumor growth. Clin Cancer Res. 17:483–493.
2011. View Article : Google Scholar : PubMed/NCBI
|