1
|
El Fakih R, Jabbour E, Ravandi F,
Hassanein M, Anjum F, Ahmed S and Kantarjian H: Current paradigms
in the management of Philadelphia chromosome positive acute
lymphoblastic leukemia in adults. Am J Hematol. 93:286–295. 2018.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee HJ, Thompson JE, Wang ES and Wetzler
M: Philadelphia chromosome-positive acute lymphoblastic leukemia:
current treatment and future perspectives. Cancer. 117:1583–1594.
2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vinhas R, Lourenço A, Santos S, Lemos M,
Ribeiro P, de Sousa AB, Baptista PV and Fernandes AR: A novel
BCR-ABL1 mutation in a patient with Philadelphia
chromosome-positive B-cell acute lymphoblastic leukemia.
OncoTargets Ther. 11:8589–8598. 2018. View Article : Google Scholar
|
4
|
Köhrer S, Havranek O, Seyfried F, Hurtz C,
Coffey GP, Kim E, Ten HE, Jäger U, Vanura K and O'Brien S: Pre-BCR
signaling in precursor B-cell acute lymphoblastic leukemia
regulates PI3K/AKT, FOXO1, and MYC, and can be targeted by SYK
inhibition. Leukemia. 30:1246–1254. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Neshat MS, Raitano AB, Wang HG, Reed JC
and Sawyers CL: The survival function of the Bcr-Abl oncogene is
mediated by Bad-dependent and -independent pathways: Roles for
phosphatidylinositol 3-kinase and Raf. Mol Cell Biol. 20:1179–1186.
2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Roumiantsev S, Aos IED, Varticovski L,
Ilaria RL and Etten RAV: The Src homology 2 domain of Bcr/Abl is
required for efficient induction of chronic myeloid leukemia–like
disease in mice but not for lymphoid leukemogenesis or activation
of phosphatidylinositol 3-kinase. Blood. 97:4–13. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sheng Z, Ma L, Sun JE, Zhu LJ and Green
MR: BCR-ABL suppresses autophagy through ATF5-mediated regulation
of mTOR transcription. Blood. 118:2840–2848. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Steelman LS, Pohnert SC, Shelton JG,
Franklin RA, Bertrand FE and Mccubrey JA: JAK/STAT, Raf/MEK/ERK,
PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis.
Leukemia. 18:189–218. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Iacobucci I, Lonetti A, Messa F, Ferrari
A, Cilloni D, Soverini S, Paoloni F, Arruga F, Ottaviani E,
Chiaretti S, et al: Different isoforms of the B-cell mutator
activation-induced cytidine deaminase are aberrantly expressed in
BCR-ABL1-positive acute lymphoblastic leukemia patients. Leukemia.
24:66–73. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tsai AG, Lu H, Raghavan SC, Muschen M,
Hsieh CL and Lieber MR: Human chromosomal translocations at CpG
sites and a theoretical basis for their lineage and stage
specificity. Cell. 135:1130–1142. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Swaminathan S, Klemm L, Park E,
Papaemmanuil E, Ford A, Kweon SM, Trageser D, Hasselfeld B, Henke
N, Mooster J, et al: Mechanisms of clonal evolution in childhood
acute lymphoblastic leukemia. Nat Immunol. 16:766–774. 2015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Dong Y, Liu F, Wu C, Li S, Zhao X, Zhang
P, Jiao J, Yu X, Ji Y and Zhang M: Illegitimate RAG-mediated
recombination events are involved in IKZF1 Δ3-6 deletion in
BCR-ABL1 lymphoblastic leukaemia. Clin Exp Immunol. 185:320–331.
2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gruber TA, Mi SC, Sposto R and Müschen M:
Activation-induced cytidine deaminase accelerates clonal evolution
in BCR-ABL1-driven B cell lineage acute lymphoblastic leukemia.
Cancer Res. 70:7411–7420. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Klemm L, Duy C, Iacobucci I, Kuchen S,
Levetzow GV, Feldhahn N, Henke N, Li Z, Hoffmann TK and Kim YM: The
B cell mutator AID promotes B lymphoid blast crisis and drug
resistance in chronic myeloid leukemia. Cancer Cell. 16:232–245.
2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Messina M, Chiaretti S, Iacobucci I,
Tavolaro S, Lonetti A, Santangelo S, Elia L, Papayannidis C,
Paoloni F, Vitale A, et al: AICDA expression in BCR/ABL1-positive
acute lymphoblastic leukaemia is associated with a peculiar gene
expression profile. Br J Haematol. 152:727–732. 2015. View Article : Google Scholar
|
16
|
Robbiani DF, Bunting S, Feldhahn N,
Bothmer A, Camps J, Deroubaix S, Mcbride KM, Klein IA, Stone G,
Eisenreich TR, et al: AID produces DNA double-strand breaks in
non-Ig genes and mature B cell lymphomas with reciprocal chromosome
translocations. Mol Cell. 36:631–641. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fielding AK: Treatment of Philadelphia
chromosome-positive acute lymphoblastic leukemia in adults: a
broader range of options, improved outcomes, and more therapeutic
dilemmas. Am Soc Clin Oncol Educ Book. 35:e352–9. 2015. View Article : Google Scholar
|
18
|
Xing H, Yang X, Liu T, Lin J, Chen X and
Gong Y: The study of resistant mechanisms and reversal in an
imatinib resistant Ph+ acute lymphoblastic leukemia cell line. Leuk
Res. 36:509–513. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Donahue AC and Fruman DA: Proliferation
and survival of activated B cells requires sustained antigen
receptor engagement and phosphoinositide 3-kinase activation. J
Immunol. 170:5851–5860. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Übelhart R, Werner M and Jumaa H: Assembly
and function of the precursor B-cell receptor. Curr Top Microbiol
Immunol. 393:3–25. 2016.PubMed/NCBI
|
21
|
Burgering B: A brief introduction to
FOXOlogy. Oncogene. 27:2258–2262. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Herzog S, Reth M and Jumaa H: Regulation
of B-cell proliferation and differentiation by pre-B-cell receptor
signalling. Nat Rev Immunol. 9:195–205. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Koretzky GA, Abtahian F and Silverman MA:
SLP76 and SLP65: Complex regulation of signalling in lymphocytes
and beyond. Nat Rev Immunol. 6:67–78. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Garg M, Wahid M and Khan F: Regulation of
peripheral and central immunity: Understanding the role of Src
homology 2 domain-containing tyrosine phosphatases, SHP-1 &
SHP-2. Immunobiology. 225:1518472020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ochiai K, Maienschein-Cline M, Mandal M,
Triggs JR, Bertolino E, Sciammas R, Dinner AR, Clark MR and Singh
H: A self-reinforcing regulatory network triggered by limiting IL-7
activates pre-BCR signaling and differentiation. Nat Immunol.
13:300–307. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Feldhahn N, Klein F, Mooster JL, Hadweh P,
Sprangers M, Wartenberg M, Bekhite MM, Hofmann WK, Herzog S, Jumaa
H, et al: Mimicry of a constitutively active pre–B cell receptor in
acute lymphoblastic leukemia cells. J Exp Med. 201:1837–1852. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hickey FB, England K and Cotter TG:
Bcr-Abl regulates osteopontin transcription via Ras, PI-3K, aPKC,
Raf-1, and MEK. J Leukoc Biol. 78:289–300. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim E, Koehrer S, Wang Z, O'Brien S,
Wierda WG, Thomas DA, Estrov Z, Kantarjian HM, Lannutti B and Davis
RE: The PI3K delta inhibitor idelalisib interferes with pre-B cell
receptor signaling in acute lymphoblastic leukemia (ALL): a new
therapeutic concept. Blood. 122:26322013. View Article : Google Scholar
|
29
|
Pellicano F, Scott MT, Helgason GV,
Hopcroft LE, Allan EK, Aspinall-O'Dea M, Copland M, Pierce A,
Huntly BJ, Whetton AD, et al: The antiproliferative activity of
kinase inhibitors in chronic myeloid leukemia cells is mediated by
FOXO transcription factors. Stem Cells. 32:2324–2337. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Szydlowski M, Kiliszek P, Sewastianik T,
Jablonska E, Bialopiotrowicz E, Gorniak P, Polak A, Markowicz S,
Nowak E, Grygorowicz MA, et al: FOXO1 activation is an effector of
SYK and AKT inhibition in tonic BCR signal-dependent diffuse large
B-cell lymphomas. Blood. 127:739–748. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lowe SW, Cepero E and Evan G: Intrinsic
tumour suppression. Nature. 432:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Flemming A, Brummer T, Reth M and Jumaa H:
The adaptor protein SLP-65 acts as a tumor suppressor that limits
pre-B cell expansion. Nat Immunol. 4:38–43. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hendriks RW and Kersseboom R: Involvement
of SLP-65 and Btk in tumor suppression and malignant transformation
of pre-B cells. Semin Immunol. 18:67–76. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kersseboom R, Middendorp S, Dingjan GM,
Dahlenborg K, Reth M, Jumaa H and Hendriks RW: Bruton's tyrosine
kinase cooperates with the B cell linker protein SLP-65 as a tumor
suppressor in Pre-B cells. J Exp Med. 198:91–98. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ji Y, Resch W, Corbett E, Yamane A,
Casellas R and Schatz DG: The in vivo pattern of binding of RAG1
and RAG2 to antigen receptor loci. Cell. 141:419–431. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang H, Peng C, Hu Y, Li H, Sheng Z, Chen
Y, Sullivan C, Cerny J, Hutchinson L, Higgins A, et al: The Blk
pathway functions as a tumor suppressor in chronic myeloid leukemia
stem cells. Nat Genet. 44:861–871. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Joung J, Konermann S, Gootenberg JS,
Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE and Zhang F:
Genome-scale CRISPR-Cas9 knockout and transcriptional activation
screening. Nat Protoc. 12:828–863. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Shalem O, Sanjana NE, Hartenian E, Shi X,
Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, et
al: Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 343:84–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
de Jong R, ten Hoeve J, Heisterkamp N and
Groffen J: ten HJ, Heisterkamp N and Groffen J: Tyrosine 207 in
CRKL is the BCR/ABL phosphorylation site. Oncogene. 14:507–513.
1997. View Article : Google Scholar : PubMed/NCBI
|
41
|
Huang R, Liu H, Chen Y, He Y, Kang Q, Tu
S, He Y, Zhou X, Wang L, Yang J, et al: EPS8 regulates
proliferation, apoptosis and chemosensitivity in BCR-ABL positive
cells via the BCR-ABL/PI3K/AKT/mTOR pathway. Oncol Rep. 39:119–128.
2018.PubMed/NCBI
|
42
|
Zhou Q, Chen Y, Chen X, Zhao W, Zhong Y,
Wang R, Jin M, Qiu Y and Kong D: In Vitro Antileukemia Activity of
ZSTK474 on K562 and Multidrug Resistant K562/A02 Cells. Int J Biol
Sci. 12:631–638. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Giebel B: Activation-induced cytidine
deaminase acts as a mutator in BCR-ABL1-transformed acute
lymphoblastic leukemia cells. J Exp Med. 204:1157–1166. 2007.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Valdiglesias V, Giunta S, Fenech M, Neri M
and Bonassi S: γH2AX as a marker of DNA double strand breaks and
genomic instability in human population studies. Mutat Res.
753:24–40. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Larsson LG: Oncogene- and tumor suppressor
gene-mediated suppression of cellular senescence. Semin Cancer
Biol. 21:367–376. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bassan R, Rohatiner AZ, Lerede T, Di BE,
Rambaldi A, Pogliani E, Rossi G, Fabris P, Morandi S, Casula P, et
al: Role of early anthracycline dose-intensity according to
expression of Philadelphia chromosome/BCR-ABL rearrangements in
B-precursor adult acute lymphoblastic leukemia. Hematol J Off J Eur
Haematol Assoc. 1:226–234. 2000.
|
47
|
Daenen S: Imatinib in Philadelphia
chromosome positive acute lymphoblastic leukemia (ALL). Blood.
102:97–100. 2003.
|
48
|
Signer RA, Montecino-Rodriguez E, Witte ON
and Dorshkind K: Immature B-cell progenitors survive oncogenic
stress and efficiently initiate Ph+ B-acute lymphoblastic leukemia.
Blood. 116:2522–2530. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Gishizky ML: Molecular mechanisms of
Bcr-Abl-induced oncogenesis. Cytokines Mol Ther. 2:251–261.
1996.PubMed/NCBI
|
50
|
Skorski T, Kanakaraj P,
Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM,
Perussia B and Calabretta B: Phosphatidylinositol-3 kinase activity
is regulated by BCR/ABL and is required for the growth of
Philadelphia chromosome-positive cells. Blood. 86:726–736. 1995.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Greaves MF and Wiemels J: Origins of
chromosome translocations in childhood leukaemia. Nat Rev Cancer.
3:639–649. 2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lieber MR, Yu K and Raghavan SC: Roles of
nonhomologous DNA end joining, V(D)J recombination, and class
switch recombination in chromosomal translocations. DNA Repair
(Amst). 5:1234–1245. 2006. View Article : Google Scholar : PubMed/NCBI
|
53
|
Mullighan CG, Miller CB, Radtke I,
Phillips LA, Dalton J, Ma J, White D, Hughes TP, Le Beau MM, Pui
CH, et al: BCR-ABL1 lymphoblastic leukaemia is characterized by the
deletion of Ikaros. Nature. 453:110–114. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Collado M and Serrano M: Senescence in
tumours: Evidence from mice and humans. Nat Rev Cancer. 10:51–57.
2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
d'Adda di Fagagna F: Living on a break:
cellular senescence as a DNA-damage response. Nat Rev Cancer.
8:512–522. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Serrano M, Lin AW, McCurrach ME, Beach D
and Lowe SW: Oncogenic ras provokes premature cell senescence
associated with accumulation of p53 and p16INK4a. Cell. 88:593–602.
1997. View Article : Google Scholar : PubMed/NCBI
|
57
|
Haigis KM and Sweet-Cordero A: New
insights into oncogenic stress. Nat Genet. 43:177–178. 2011.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Sharma N, Magistroni V, Piazza R, Citterio
S, Mezzatesta C, Khandelwal P, Pirola A and Gambacorti-Passerini C:
BCR/ABL1 and BCR are under the transcriptional control of the MYC
oncogene. Mol Cancer. 14:1322015. View Article : Google Scholar : PubMed/NCBI
|
59
|
Clapper E, Wang S, Raninga PV, Di TG and
Tonissen KF: Cross-talk between Bcr-abl and the thioredoxin system
in chronic myeloid leukaemia: implications for CML treatment.
Antioxidants. 9:92020. View Article : Google Scholar
|
60
|
Melo JV and Barnes DJ: Chronic myeloid
leukaemia as a model of disease evolution in human cancer. Nat Rev
Cancer. 7:441–453. 2007. View Article : Google Scholar : PubMed/NCBI
|
61
|
McCarron SL, Maher K, Kelly J, Ryan MF and
Langabeer SE: Rapid evolution to blast crisis associated with a
Q252H ABL1 kinase domain mutation in e19a2 BCR-ABL1 chronic myeloid
leukaemia. Case Rep Hematol. 2013:4907402013.PubMed/NCBI
|
62
|
Popp C, Dean W, Feng S, Cokus SJ, Andrews
S, Pellegrini M, Jacobsen SE and Reik W: Genome-wide erasure of DNA
methylation in mouse primordial germ cells is affected by AID
deficiency. Nature. 463:1101–1105. 2010. View Article : Google Scholar : PubMed/NCBI
|
63
|
Blake RA, Broome MA, Liu X, Wu J, Gishizky
M, Sun L and Courtneidge SA: SU6656, a selective src family kinase
inhibitor, used to probe growth factor signaling. Mol Cell Biol.
20:9018–9027. 2000. View Article : Google Scholar : PubMed/NCBI
|
64
|
Plas DR and Thompson CB: Akt activation
promotes degradation of tuberin and FOXO3a via the proteasome. J
Biol Chem. 278:12361–12366. 2003. View Article : Google Scholar : PubMed/NCBI
|
65
|
Coffer PJ and Burgering BM: Forkhead-box
transcription factors and their role in the immune system. Nat Rev
Immunol. 4:889–899. 2004. View Article : Google Scholar : PubMed/NCBI
|
66
|
Meixlsperger S, Köhler F, Wossning T,
Reppel M, Müschen M and Jumaa H: Conventional light chains inhibit
the autonomous signaling capacity of the B cell receptor. Immunity.
26:323–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
67
|
Schmitt CA: Cellular senescence and cancer
treatment. Biochim Biophys Acta. 1775:5–20. 2007.PubMed/NCBI
|