Role of chemokines in hepatocellular carcinoma (Review)
- Authors:
- Dongdong Xue
- Ya Zheng
- Junye Wen
- Jingzhao Han
- Hongfang Tuo
- Yifan Liu
- Yanhui Peng
-
Affiliations: Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China, Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China - Published online on: December 22, 2020 https://doi.org/10.3892/or.2020.7906
- Pages: 809-823
-
Copyright: © Xue et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dong G, Zhang S, Shen S, Sun L, Wang X, Wang H, Wu J, Liu T, Wang C, Wang H, et al: SPATS2, negatively regulated by miR-145-5p, promotes hepatocellular carcinoma progression through regulating cell cycle. Cell Death Dis. 11:8372020. View Article : Google Scholar : PubMed/NCBI | |
Zhang FP, Huang YP, Luo WX, Deng WY, Liu CQ, Xu LB and Liu C: Construction of a risk score prognosis model based on hepatocellular carcinoma microenvironment. World J Gastroenterol. 26:134–153. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang XF, Yang X, Jia HL, Zhu WW, Lu L, Shi W, Zhang H, Chen JH, Tao YF, Wang ZX, et al: Bcl-2 expression is a poor predictor for hepatocellular carcinoma prognosis of andropause-age patients. Cancer Biol Med. 13:459–468. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gnoni A, Santini D, Scartozzi M, Russo A, Licchetta A, Palmieri V, Lupo L, Faloppi L, Palasciano G, Memeo V, et al: Hepatocellular carcinoma treatment over sorafenib: Epigenetics, microRNAs and microenvironment. Is there a light at the end of the tunnel? Expert Opin Ther Targets. 19:1623–1635. 2015. View Article : Google Scholar | |
Paget S: The distribution of secondary growth in cancer. Lancet. 1:571–573. 1889. View Article : Google Scholar | |
Sainz B and Heeschen C: Standing out from the crowd: Cancer stem cells in hepatocellular carcinoma. Cancer Cell. 23:431–433. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J and Zhu Y: Recent advances in liver cancer stem cells: Non-coding RNAs, oncogenes and oncoproteins. Front Cell Dev Biol. 8:5483352020. View Article : Google Scholar : PubMed/NCBI | |
Kakinuma T and Hwang ST: Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol. 79:639–651. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nagarsheth N, Wicha MS and Zou W: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI | |
Griffith JW, Sokol CL and Luster AD: Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol. 32:659–702. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sakai N, Yoshidome H, Shida T, Kimura F, Shimizu H, Ohtsuka M, Takeuchi D, Sakakibara M and Miyazaki M: CXCR4/CXCL12 expression profile is associated with tumor microenvironment and clinical outcome of liver metastases of colorectal cancer. Clin Exp Metastasis. 29:101–110. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rezaeeyan H, Shirzad R, McKee TD and Saki N: Role of chemokines in metastatic niche: New insights along with a diagnostic and prognostic approach. APMIS. 126:359–370. 2018. View Article : Google Scholar : PubMed/NCBI | |
Raffaella B and Graham GJ: Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol. 7:2242016.PubMed/NCBI | |
Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S and Stumm R: ACKR3 regulation of neuronal migration requires ACKR3 phosphorylation, but not β-Arrestin. Cell Rep. 26:1473–1488.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Purvanov V, Matti C, Samson GPB, Kindinger I and Legler DF: Fluorescently tagged CCL19 and CCL21 to monitor CCR7 and ACKR4 functions. Int J Mol Sci. 19:38762018. View Article : Google Scholar | |
Matti C, D'Uonnolo G, Artinger M, Melgrati S, Salnikov A, Thelen S, Purvanov V, Strobel TD, Spannagel L, Thelen M and Legler DF: CCL20 is a novel ligand for the scavenging atypical chemokine receptor 4. J Leukoc Biol. 107:1137–1154. 2020. View Article : Google Scholar : PubMed/NCBI | |
Do HTT, Lee CH and Cho J: Chemokines and their receptors: Multifaceted roles in cancer progression and potential value as cancer prognostic markers. Cancers (Basel). 12:2872020. View Article : Google Scholar | |
Ozakyol A: Global epidemiology of hepatocellular carcinoma (HCC Epidemiology). J Gastrointest Cancer. 48:238–240. 2017. View Article : Google Scholar : PubMed/NCBI | |
Giannelli G, Rani B, Dituri F, Cao Y and Palasciano G: Moving towards personalised therapy in patients with hepatocellular carcinoma: The role of the microenvironment. Gut. 63:1668–1676. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marra F and Tacke F: Roles for chemokines in liver disease. Gastroenterology. 147:577–594.e1. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh HY, Li LL, Lee D, Lo RC, Wong CM, et al: Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology. 64:797–813. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kryczek I, Wang L, Wu K, Li W, Zhao E, Cui T, Wei S, Liu Y, Wang Y, Vatan L, et al: Inflammatory regulatory T cells in the microenvironments of ulcerative colitis and colon carcinoma. Oncoimmunology. 5:e11054302016. View Article : Google Scholar : PubMed/NCBI | |
Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Roliński J, et al: IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol. 186:4388–4395. 2011. View Article : Google Scholar : PubMed/NCBI | |
Han KQ, He XQ, Ma MY, Guo XD, Zhang XM, Chen J, Han H, Zhang WW, Zhu QG, Nian H and Ma LJ: Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma. World J Gastroenterol. 21:4864–4874. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, et al: Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer. 126:1095–1108. 2010.PubMed/NCBI | |
Zhang H, He G, Kong Y, Chen Y, Wang B, Sun X, Jia B, Xie X, Wang X, Chen D, et al: Tumour-activated liver stromal cells regulate myeloid-derived suppressor cells accumulation in the liver. Clin Exp Immunol. 188:96–108. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsukada K, Irimura T, Shibahara N, Nakayama T, Yoshie O, et al: Chemokine CXCL16 suppresses liver metastasis of colorectal cancer via augmentation of tumor-infiltrating natural killer T cells in a murine model. Oncol Rep. 29:975–982. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, Tsukada K, Irimura T, Shibahara N, Takasaki I, et al: CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer. 14:9492014. View Article : Google Scholar : PubMed/NCBI | |
Adamski V, Hattermann K, Kubelt C, Cohrs G, Lucius R, Synowitz M, Sebens S and Held-Feindt J: Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1. Oncogene. 39:4421–4435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Takiguchi G, Nishita M, Kurita K, Kakeji Y and Minami Y: Wnt5a-Ror2 signaling in mesenchymal stem cells promotes proliferation of gastric cancer cells by activating CXCL16-CXCR6 axis. Cancer Sci. 107:290–297. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shi JY, Yang LX, Wang ZC, Wang LY, Zhou J, Wang XY, Shi GM, Ding ZB, Ke AW, Dai Z, et al: CC chemokine receptor-like 1 functions as a tumour suppressor by impairing CCR7-related chemotaxis in hepatocellular carcinoma. J Pathol. 235:546–558. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi JY, Duan M, Sun QM, Yang L, Wang ZC, Mynbaev OA, He YF, Wang LY, Zhou J, Tang QQ, et al: Naive Treg-like CCR7+ mononuclear cells indicate unfavorable prognosis in hepatocellular carcinoma. Tumour Biol. 37:9909–9917. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wong HS, Jaumouillé V, Heit B, Doodnauth SA, Patel S, Huang YW, Grinstein S and Robinson LA: Cytoskeletal confinement of CX3CL1 limits its susceptibility to proteolytic cleavage by ADAM10. Mol Biol Cell. 25:3884–3899. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Hu A, Wang S, Tian B, Jiang L, Liang Y, Wang H and Dong J: ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol. 57:249–263. 2020.PubMed/NCBI | |
Liu W, Jiang L, Bian C, Liang Y, Xing R, Yishakea M and Dong J: Role of CX3CL1 in diseases. Arch Immunol Ther Exp (Warsz). 64:371–383. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Liang Y, Jiang L, Wang H, Wang S and Dong J: CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol. 53:1544–1556. 2018.PubMed/NCBI | |
Liang Y, Yi L, Liu P, Jiang L, Wang H, Hu A, Sun C and Dong J: CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J Cancer. 9:3603–3612. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Yang M, Shao J, Miao Y, Han J and Du J: Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol Cancer. 12:1412013. View Article : Google Scholar : PubMed/NCBI | |
Chen EB, Zhou ZJ, Xiao K, Zhu GQ, Yang Y, Wang B, Zhou SL, Chen Q, Yin D, Wang Z, et al: The miR-561-5p/CX3CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX3CR1+ natural killer cells infiltration. Theranostics. 9:4779–4794. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miao S, Lu M, Liu Y, Shu D, Zhu Y, Song W, Ma Y, Ma R, Zhang B, Fang C and Ming ZY: Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1-CX3CR1 dependent manner and induce tumour cell apoptosis. Mol Oncol. 14:2546–2559. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoshida T, Imai T, Takagi S, Nishimura M, Ishikawa I, Yaoi T and Yoshie O: Structure and expression of two highly related genes encoding SCM-1/human lymphotactin. FEBS Lett. 395:82–88. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lei Y and Takahama Y: XCL1 and XCR1 in the immune system. Microbes Infect. 14:262–267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki C, Sugiyama M, Ohta T, Hemmi H, Hamada E, Sasaki I, Fukuda Y, Yano T, Nobuoka M, Hirashima T, et al: Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J Immunol. 190:6071–6082. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khurram SA, Whawell SA, Bingle L, Murdoch C, McCabe BM and Farthing PM: Functional expression of the chemokine receptor XCR1 on oral epithelial cells. J Pathol. 221:153–163. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gantsev SK, Umezawa K, Islamgulov DV, Khusnutdinova EK, Ishmuratova RS, Frolova VY and Kzyrgalin SR: The role of inflammatory chemokines in lymphoid neoorganogenesis in breast cancer. Biomed Pharmacother. 67:363–366. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Rooper L, Xie J, Rayahin J, Burdette JE, Kajdacsy-Balla AA and Barbolina MV: The lymphotactin receptor is expressed in epithelial ovarian carcinoma and contributes to cell migration and proliferation. Mol Cancer Res. 10:1419–1429. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Han S, Wu Z, Han Z, Yan W, Liu T, Wei H, Song D, Zhou W, Yang X and Xiao J: XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer. Biochem Biophys Res Commun. 464:635–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yanru W, Zhenyu B, Zhengchuan N, Qi Q, Chunmin L and Weiqiang Y: Transcriptomic analyses of chemokines reveal that down-regulation of XCR1 is associated with advanced hepatocellular carcinoma. Biochem Biophys Res Commun. 496:1314–1321. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X: The inducers of immunogenic cell death for tumor immunotherapy. Tumori. 104:1–8. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mizumoto Y, Hemmi H, Katsuda M, Miyazawa M, Kitahata Y, Miyamoto A, Nakamori M, Ojima T, Matsuda K, Nakamura M, et al: Anticancer effects of chemokine-directed antigen delivery to a cross-presenting dendritic cell subset with immune checkpoint blockade. Br J Cancer. 122:1185–1193. 2020. View Article : Google Scholar : PubMed/NCBI | |
Spranger S and Gajewski TF: A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J Immunother Cancer. 3:432015. View Article : Google Scholar : PubMed/NCBI | |
Botelho NK, Tschumi BO, Hubbell JA, Swartz MA, Donda A and Romero P: Combination of synthetic long peptides and XCL1 fusion proteins results in superior tumor control. Front Immunol. 10:2942019. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Wu Z, Zhao H, Wang Y, Ge Y, Wang D, Li Z, An C, Liu Y, Wang F, et al: XCL1/Glypican-3 fusion gene immunization generates potent antitumor cellular immunity and enhances Anti-PD-1 efficacy. Cancer Immunol Res. 8:81–93. 2020. View Article : Google Scholar : PubMed/NCBI | |
Audsley KM, McDonnell AM and Waithman J: Cross-presenting XCR1+ dendritic cells as targets for cancer immunotherapy. Cells. 9:5652020. View Article : Google Scholar | |
Wylie B, Read J, Buzzai AC, Wagner T, Troy N, Syn G, Stone SR, Foley B, Bosco A, Cruickshank MN, et al: CD8+XCR1neg dendritic cells express high levels of toll-like receptor 5 and a unique complement of endocytic receptors. Front Immunol. 9:29902019. View Article : Google Scholar : PubMed/NCBI | |
Qin CJ, Zhao LH, Zhou X, Zhang HL, Wen W, Tang L, Zeng M, Wang MD, Fu GB, Huang S, et al: Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett. 420:26–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
Giles AJ, Reid CM, Evans JD, Murgai M, Vicioso Y, Highfill SL, Kasai M, Vahdat L, Mackall CL, Lyden D, et al: Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res. 76:1335–1347. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, et al: CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:5671–5682. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qi S, Perrino S, Miao X, Lamarche-Vane N and Brodt P: The chemokine CCL7 regulates invadopodia maturation and MMP-9 mediated collagen degradation in liver-metastatic carcinoma cells. Cancer Lett. 483:98–113. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Chen JX, Chen Y, Cai LL, Wang XZ, Guo WH and Zheng JF: The chemokine receptor CCR10 promotes inflammation-driven hepatocarcinogenesis via PI3K/Akt pathway activation. Cell Death Dis. 9:2322018. View Article : Google Scholar : PubMed/NCBI | |
Hippe A, Braun SA, Oláh P, Gerber PA, Schorr A, Seeliger S, Holtz S, Jannasch K, Pivarcsi A, Buhren B, et al: EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. Br J Cancer. 123:942–954. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du D, Liu Y, Qian H, Zhang B, Tang X, Zhang T and Liu W: The effects of the CCR6/CCL20 biological axis on the invasion and metastasis of hepatocellular carcinoma. Int J Mol Sci. 15:6441–6452. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang F and Geng XP: Chemokines and hepatocellular carcinoma. World J Gastroenterol. 16:1832–1836. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tan H, Wang S and Zhao L: A tumour-promoting role of Th9 cells in hepatocellular carcinoma through CCL20 and STAT3 pathways. Clin Exp Pharmacol Physiol. 44:213–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L and Coukos G: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 475:226–230. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhou Z, Lu S, Huang X, Zhang C, Jiang R, Yao A, Sun B and Wang X: Chemokine CCL15 mediates migration of human bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma. Stem Cells. 34:1112–1122. 2016. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Mishra MK, Eltoum IA, Bae S, Lillard JW Jr and Singh R: CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep. 8:13232018. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Mishra MK, Rivers BM, Gordetsky JB, Bae S and Singh R: Biological and clinical significance of the CCR5/CCL5 axis in hepatocellular carcinoma. Cancers (Basel). 12:8832020. View Article : Google Scholar | |
Sasaki R, Devhare PB, Steele R, Ray R and Ray RB: Hepatitis C virus-induced CCL5 secretion from macrophages activates hepatic stellate cells. Hepatology. 66:746–757. 2017. View Article : Google Scholar : PubMed/NCBI | |
González-Martín A, Mira E and Mañes S: CCR5 in cancer immunotherapy: More than an ‘attractive’ receptor for T cells. Oncoimmunology. 1:106–108. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Zhan Q, Peng X, Qiu Z and Zhao T: CCL2 influences the sensitivity of lung cancer A549 cells to docetaxel. Oncol Lett. 16:1267–1274. 2018.PubMed/NCBI | |
Pasquier J, Gosset M, Geyl C, Hoarau-Véchot J, Chevrot A, Pocard M, Mirshahi M, Lis R, Rafii A and Touboul C: CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer. Mol Cancer. 17:472018. View Article : Google Scholar : PubMed/NCBI | |
Su S, Sun X, Zhang Q, Zhang Z and Chen J: CCL20 promotes ovarian cancer chemotherapy resistance by regulating ABCB1 expression. Cell Struct Funct. 44:21–28. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vaquero J, Briz O, Herraez E, Muntané J and Marin JJ: Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. Biochim Biophys Acta. 1833:2212–2219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Li X, Bi Y, Zheng Y, Wang J, Li X, Huang Z, Chen L and Huang Y and Huang Y: CCL14 is a prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY). 12:784–807. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Perea AL, Rojas M and Velilla-Hernández PA: High concentrations of atorvastatin reduce in-vitro function of conventional T and regulatory T cells. Clin Exp Immunol. 196:237–248. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Xu W, Wei C, Huang J, Xu J, Zhang Y, Zhao Y, Chen J, Dong S, Liu B and Liang C: CCL14 serves as a novel prognostic factor and tumor suppressor of HCC by modulating cell cycle and promoting apoptosis. Cell Death Dis. 10:7962019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wan JX, Ke ZP, Wang F, Chai HX and Liu JQ: TMEM88, CCL14 and CLEC3B as prognostic biomarkers for prognosis and palindromia of human hepatocellular carcinoma. Tumour Biol. 39:10104283177089002017. View Article : Google Scholar : PubMed/NCBI | |
Wilson GC, Kuboki S, Freeman CM, Nojima H, Schuster RM, Edwards MJ and Lentsch AB: CXC chemokines function as a rheostat for hepatocyte proliferation and liver regeneration. PLoS One. 10:e01200922015. View Article : Google Scholar : PubMed/NCBI | |
Vandercappellen J, Van Damme J and Struyf S: The role of CXC chemokines and their receptors in cancer. Cancer Lett. 267:226–244. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Yang ZF, Zhou PY, Zhou C, Guan RY, Sun BY, Fan J, Zhou J, Yi Y and Qiu SJ: ROR-α-1 inhibits the proliferation, invasion, and migration of hepatocellular carcinoma MHCC97H via downregulation of chemokine CXCL5. Cytokine. 129:1550042020. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Zhou ZJ, Hu ZQ, Li X, Huang XW, Wang Z, Fan J, Dai Z and Zhou J: CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Lettr. 358:124–135. 2015. View Article : Google Scholar | |
Li XP, Yang XY, Biskup E, Zhou J, Li HL, Wu YF, Chen ML and Xu F: Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 6:22880–22889. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto M, Kikuchi H, Ohta M, Kawabata T, Hiramatsu Y, Kondo K, Baba M, Kamiya K, Tanaka T, Kitagawa M and Konno H: TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche. Cancer Res. 68:9754–9762. 2008. View Article : Google Scholar : PubMed/NCBI | |
Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, Eefsen RL, Reynolds AR and Brodt P: The multifaceted role of the microenvironment in liver metastasis: Biology and clinical implications. Cancer Res. 73:2031–2043. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhu YH, Li Y and Guan XY: Identification of chemokine CXCL10 in tumor microenvironment by antibody array as a prognostic marker in hepatocellular carcinoma. Neoplasma. 64:778–786. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li B, Su H, Cao J and Zhang L: CXCL13 rather than IL-31 is a potential indicator in patients with hepatocellular carcinoma. Cytokine. 89:91–97. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song X, Wang Z, Jin Y, Wang Y and Duan W: Loss of miR-532-5p in vitro promotes cell proliferation and metastasis by influencing CXCL2 expression in HCC. Am J Transl Res. 7:2254–2261. 2015.PubMed/NCBI | |
Ding J, Xu K, Zhang J, Lin B, Wang Y, Yin S, Xie H, Zhou L and Zheng S: Overexpression of CXCL2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma. BMB Rep. 51:630–635. 2018. View Article : Google Scholar : PubMed/NCBI | |
Subat S, Mogushi K, Yasen M, Kohda T, Ishikawa Y and Tanaka H: Identification of genes and pathways, including the CXCL2 axis, altered by DNA methylation in hepatocellular carcinoma. J Cancer Res Clin Oncol. 145:675–684. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi A, Shi H, Dong L, Xu S, Jia M, Guo X and Wang T: CXCR7 as a chemokine receptor for SDF-1 promotes gastric cancer progression via MAPK pathways. Scand J Gastroenterol. 52:745–753. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li D, Qu C, Ning Z, Wang H, Zang K, Zhuang L, Chen L, Wang P and Meng Z: Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts. Am J Cancer Res. 6:2192–2206. 2016.PubMed/NCBI | |
Croker AK and Allan AL: Cancer stem cells: Implications for the progression and treatment of metastatic disease. J Cell Mol Med. 12:374–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D and Yousefi B: Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 233:2019–2031. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teng F, Tian WY, Wang YM, Zhang YF, Guo F, Zhao J, Gao C and Xue FX: Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J Hematol Oncol. 9:82016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang MD, Cheng P, Huang H, Dong W, Zhang WW, Li PP, Lin C, Pan ZY, Wu MC and Zhou WP: Hepatitis B virus X protein promotes the stem-like properties of OV6+ cancer cells in hepatocellular carcinoma. Cell Death Dis. 8:e25602017. View Article : Google Scholar : PubMed/NCBI | |
Kaemmerer D, Schindler R, Mußbach F, Dahmen U, Altendorf-Hofmann A, Dirsch O, Sänger J, Schulz S and Lupp A: Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: Tumor capillaries as promising targets. BMC Cancer. 17:8962017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Yang W, Chen PW, Alizadeh H and Niederkorn JY: Inhibition of chemokine receptor expression on uveal melanomas by CXCR4 siRNA and its effect on uveal melanoma liver metastases. Invest Ophthalmol Vis Sci. 50:5522–5528. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deol A, Abrams J, Masood A, Al-Kadhimi Z, Abidi MH, Ayash L, Lum LG, Ratanatharathorn V and Uberti JP: Long-term follow up of patients proceeding to transplant using plerixafor mobilized stem cells and incidence of secondary myelodysplastic syndrome/AML. Bone Marrow Transplant. 48:1112–1116. 2013. View Article : Google Scholar : PubMed/NCBI | |
Collins PJ, McCully ML, Martínez-Muñoz L, Santiago C, Wheeldon J, Caucheteux S, Thelen S, Cecchinato V, Laufer JM, Purvanov V, et al: Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J. 31:3084–3097. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Teng F, Wang G and Nie Z: Overexpression of CXCR7 induces angiogenic capacity of human hepatocellular carcinoma cells via the AKT signaling pathway. Oncol Rep. 36:2275–2281. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Han MM, Wang F, Xu LL, Yu HX and Yang PY: CXCR7 stimulates MAPK signaling to regulate hepatocellular carcinoma progression. Cell Death Dis. 5:e14882014. View Article : Google Scholar : PubMed/NCBI | |
Billottet C, Quemener C and Bikfalvi A: CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta. 1836:287–295. 2013.PubMed/NCBI | |
Ma B, Khazali A and Wells A: CXCR3 in carcinoma progression. Histol Histopathol. 30:781–792. 2015.PubMed/NCBI | |
Gao Q, Zhao YJ, Wang XY, Qiu SJ, Shi YH, Sun J, Yi Y, Shi JY, Shi GM, Ding ZB, et al: CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma. Cancer Res. 72:3546–3556. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Tian L, Xu Y, Zhang M, Xiang S, Zhao J and Wang Z: CXCR7 silencing inhibits the migration and invasion of human tumor endothelial cells derived from hepatocellular carcinoma by suppressing STAT3. Mol Med Rep. 18:1644–1650. 2018.PubMed/NCBI | |
Xu Y, Fang F, Jiao H, Zheng X, Huang L, Yi X and Zhao W: Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma. Cancer Immunol Immunother. 68:1959–1969. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian H, Huang P, Zhao Z, Tang W and Xia J: HIF-1α plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL6 expression. Cell Physiol Biochem. 34:1536–1546. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Yao X, Li H, Li X, Zhang T, Sun Q, Ji C and Chen G: Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage. J Mol Neurosci. 64:421–430. 2018. View Article : Google Scholar : PubMed/NCBI | |
Halvaei S, Daryani S, Eslami-S Z, Samadi T, Jafarbeik-Iravani N, Bakhshayesh TO, Majidzadeh-A K and Esmaeili R: Exosomes in cancer liquid biopsy: A focus on breast cancer. Mol Ther Nucleic Acids. 10:131–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
Anel A, Gallego-Lleyda A, de Miguel D, Naval J and Martínez-Lostao L: Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells. 8:1542019. View Article : Google Scholar | |
Almeida VH, Rondon AMR, Gomes T and Monteiro RQ: Novel aspects of extracellular vesicles as mediators of cancer-associated thrombosis. Cells. 8:7162019. View Article : Google Scholar | |
Rao PSS, O'Connell K and Finnerty TK: Potential role of extracellular vesicles in the pathophysiology of drug addiction. Mol Neurobiol. 55:6906–6913. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kohama I, Kosaka N, Chikuda H and Ochiya T: An insight into the roles of MicroRNAs and exosomes in sarcoma. Cancers (Basel). 11:4282019. View Article : Google Scholar | |
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI | |
Sun JF, Zhang D, Gao CJ, Zhang YW and Dai QS: Exosome-mediated MiR-155 transfer contributes to hepatocellular carcinoma cell proliferation by targeting PTEN. Med Sci Monit Basic Res. 25:218–228. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee JY and Kim HS: Extracellular vesicles in neurodegenerative diseases: A double-edged sword. Tissue Eng Regen Med. 14:667–678. 2017. View Article : Google Scholar : PubMed/NCBI | |
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T and Duroux M: A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 1846:75–87. 2014.PubMed/NCBI | |
Yi YW, Lee JH, Kim SY, Pack CG, Ha DH, Park SR, Youn J and Cho BS: Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 21:6652020. View Article : Google Scholar | |
Wu P, Zhang B, Ocansey DKW, Xu W and Qian H: Extracellular vesicles: A bright star of nanomedicine. Biomaterials. 6:1204672020. View Article : Google Scholar | |
Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, et al: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 12:655–664. 2016. View Article : Google Scholar : PubMed/NCBI | |
Si Y, Kim S, Zhang E, Tang Y, Jaskula-Sztul R, Markert JM, Chen H, Zhou L and Liu XM: Targeted exosomes for drug delivery: Biomanufacturing, surface tagging, and validation. Biotechnol J. 15:e19001632020. View Article : Google Scholar : PubMed/NCBI | |
Prada I and Meldolesi J: Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets. Int J Mol Sci. 17:12962016. View Article : Google Scholar | |
Nakase I and Futaki S: Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep. 5:101122015. View Article : Google Scholar : PubMed/NCBI | |
Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P and Schiffelers RM: Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles. 5:310532016. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T, Yao K, Kanda H, Ae K, Okawa A, et al: Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci USA. 115:2204–2209. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luis-Ravelo D, Antón I, Zandueta C, Valencia K, Ormazábal C, Martínez-Canarias S, Guruceaga E, Perurena N, Vicent S, De Las Rivas J and Lecanda F: A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer. Oncogene. 33:5090–5099. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li H, Yang C, Shi Y and Zhao L: Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology. 16:1032018. View Article : Google Scholar : PubMed/NCBI | |
Viñas JL, Spence M, Gutsol A, Knoll W, Burger D, Zimpelmann J, Allan DS and Burns KD: Receptor-ligand interaction mediates targeting of endothelial colony forming cell-derived exosomes to the kidney after ischemic injury. Sci Rep. 8:163202018. View Article : Google Scholar : PubMed/NCBI | |
Ciullo A, Biemmi V, Milano G, Bolis S, Cervio E, Fertig ET, Gherghiceanu M, Moccetti T, Camici GG, Vassalli G and Barile L: Exosomal expression of CXCR4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci. 20:4682019. View Article : Google Scholar | |
Wei G, Jie Y, Haibo L, Chaoneng W, Dong H, Jianbing Z, Junjie G, Leilei M, Hongtao S, Yunzeng Z and Junbo G: Dendritic cells derived exosomes migration to spleen and induction of inflammation are regulated by CCR7. Sci Rep. 7:429962017. View Article : Google Scholar : PubMed/NCBI | |
Longo V, Gnoni A, Casadei Gardini A, Pisconti S, Licchetta A, Scartozzi M, Memeo R, Palmieri VO, Aprile G, Santini D, et al: Immunotherapeutic approaches for hepatocellular carcinoma. Oncotarget. 8:33897–33910. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu YC, Yeh CT and Lin KH: Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells. 9:13312020. View Article : Google Scholar | |
Liu LZ, Zhang Z, Zheng BH, Shi Y, Duan M, Ma LJ, Wang ZC, Dong LQ, Dong PP, Shi JY, et al: CCL15 recruits suppressive monocytes to facilitate Immune escape and disease progression in hepatocellular carcinoma. Hepatology. 69:143–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun F, Wang J, Sun Q, Li F, Gao H, Xu L, Zhang J, Sun X, Tian Y, Zhao Q, et al: Interleukin-8 promotes integrin β3 upregulation and cell invasion through PI3K/Akt pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:4492019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Xu L, Yan J, Zhen ZJ, Ji Y, Liu CQ, Lau WY, Zheng L and Xu J: CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1292015. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Li S, Ma L, Li Y, Zhang X, Peng Q, Mo C, Huang L, Qin X and Liu Y: Type conversion of secretomes in a 3D TAM2 and HCC cell co-culture system and functional importance of CXCL2 in HCC. Sci Rep. 6:245582016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang L, Li H, Ge C, Zhao F, Tian H, Chen T, Jiang G, Xie H, Cui Y, et al: CXCL3 contributes to CD133+ CSCs maintenance and forms a positive feedback regulation loop with CD133 in HCC via Erk1/2 phosphorylation. Sci Rep. 6:274262016. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ding Q, Xia Y, Ding S, Lu P, Sun L and Liu M: An alternatively spliced variant of CXCR3 mediates the metastasis of CD133+ liver cancer cells induced by CXCL9. Oncotarget. 7:14405–14414. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ouyang Y, Liu K, Hao M, Zheng R, Zhang C, Wu Y, Zhang X, Li N, Zheng J and Chen D: Radiofrequency ablation-increased CXCL10 is associated with earlier recurrence of hepatocellular carcinoma by promoting stemness. Tumour Biol. 37:3697–3704. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ling CC, Ng KT, Shao Y, Geng W, Xiao JW, Liu H, Li CX, Liu XB, Ma YY, Yeung WH, et al: Post-transplant endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling promotes liver tumor growth. J Hepatol. 60:103–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao W, Li S, Lv M, Yang X, Li M and Zhang Z: CXCL11 promotes self-renewal and tumorigenicity of α2δ1+ liver tumor-initiating cells through CXCR3/ERK1/2 signaling. Cancer Lett. 449:163–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li C, Kang D, Sun X, Liu Y, Wang J and Gao P: The effect of C-X-C motif chemokine 13 on hepatocellular carcinoma associates with Wnt signaling. Biomed Res Int. 2015:3454132015.PubMed/NCBI | |
Deng L, Chen N, Li Y, Zheng H and Lei Q: CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta. 1806:42–49. 2010.PubMed/NCBI | |
Yuan Y, Liu J, Liu Z, He Y, Zhang Z, Jiang C and Qian Q: Chemokine CCL3 facilitates the migration of hepatoma cells by changing the concentration intracellular Ca. Hepatol Res. 40:424–431. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bai H, Weng Y, Bai S, Jiang Y, Li B, He F, Zhang R, Yan S, Deng F, Wang J and Shi Q: CCL5 secreted from bone marrow stromal cells stimulates the migration and invasion of Huh7 hepatocellular carcinoma cells via the PI3K-Akt pathway. Int J Oncol. 45:333–343. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liao WC, Yen HR, Liao CK, Tseng TJ, Lan CT and Liu CH: DSE regulates the malignant characters of hepatocellular carcinoma cells by modulating CCL5/CCR1 axis. Am J Cancer Res. 9:347–362. 2019.PubMed/NCBI | |
Li Y, Wu J and Zhang P: CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion. Tumour Biol. 37:4501–4507. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Yang Y, Yu P, Tao H, Lu X, Wang L, Liu D, Chen Y and Chen C: Bioinformatics analysis and significance of expression of CC chemokine ligand 23 (CCL23) in hepatocellular carcinoma. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 35:903–909. 2019.(In Chinese). PubMed/NCBI | |
Zhuang H, Cao G, Kou C and Liu T: CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in vitro through activation of the Hedgehog pathway. Oncol Rep. 39:21–30. 2018.PubMed/NCBI | |
Jin L, Liu WR, Tian MX, Jiang XF, Wang H, Zhou PY, Ding ZB, Peng YF, Dai Z, Qiu SJ, et al: CCL24 contributes to HCC malignancy via RhoB-VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget. 8:5135–5148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Li X, Chen S, Zeng Q, Zhao Y and Luo F: Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol. 33:172016. View Article : Google Scholar : PubMed/NCBI | |
Wiedemann GM, Röhrle N, Makeschin MC, Fesseler J, Endres S, Mayr D and Anz D: Peritumoural CCL1 and CCL22 expressing cells in hepatocellular carcinomas shape the tumour immune infiltrate. Pathology. 51:586–592. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Wu H, Jin ZJ, Ma D, Yuen S, Jing XQ, Shi MM, Shen BY, Peng CH, Zhao R and Qiu WH: Up-regulation of chemokine receptor CCR4 is associated with Human Hepatocellular Carcinoma malignant behavior. Sci Rep. 7:123622017. View Article : Google Scholar : PubMed/NCBI | |
Mukaida N, Sasaki SI and Baba T: CCL4 signaling in the tumor microenvironment. Adv Exp Med Biol. 1231:23–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo KQ, Shi YN and Peng JC: The effect of chemokine CC motif ligand 19 on the proliferation and migration of hepatocellular carcinoma. Tumour Biol. 35:12575–12581. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Chang Y and Cao P: CCR7 preservation via histone deacetylase inhibition promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells. Exp Cell Res. 371:231–237. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL, Wu SF, Zhou JX, Zhao WX, Liu JM, Wang XM, et al: Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell. 78:1192–1206.e10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu B, Deng C, Wu X, Ji T, Zhao L, Han Y, Yang W, Qi Y, Wang Z, Yang Z and Yang Y: CCR9 and CCL25: A review of their roles in tumor promotion. J Cell Physiol. 235:9121–9132. 2020. View Article : Google Scholar : PubMed/NCBI |