1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Abnet CC, Arnold M and Wei WQ:
Epidemiology of esophageal squamous cell carcinoma.
Gastroenterology. 154:360–373. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xie SH and Lagergren J: Risk factors for
oesophageal cancer. Best Pract Res Clin Gastroenterol. 36-37:3–8.
2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ohashi S, Miyamoto S, Kikuchi O, Goto T,
Amanuma Y and Muto M: Recent advances from basic and clinical
studies of esophageal squamous cell carcinoma. Gastroenterology.
149:1700–1715. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Feng Q, Zhang H, Yao D, Chen WD and Wang
YD: Emerging role of non-coding RNAs in esophageal squamous cell
carcinoma. Int J Mol Sci. 30:2582019. View Article : Google Scholar
|
6
|
Shen WJ, Zhang F, Zhao X and Xu J: LncRNAs
and esophageal squamous cell carcinoma-implications for
pathogenesis and drug development. J Cancer. 7:1258–1264. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun K and Zhang G: Long noncoding RNA
CASC2 suppresses esophageal squamous cell carcinoma progression by
increasing SOCS1 expression. Cell Biosci. 9:902019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guan Z, Wang Y, Wang Y, Liu X, Wang Y,
Zhang W, Chi X, Dong Y, Liu X, Shao S and Zhan Q: Long non-coding
RNA LOC100133669 promotes cell proliferation in oesophageal
squamous cell carcinoma. Cell Prolif. 53:e127502020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu X, Ma J, Chen J and Huang H: LncRNA
CACS15 regulates tongue squamous cell carcinoma cell behaviors and
predicts survival. BMC Oral Health. 19:2312019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang X, Guo B, Zhu Y, Xu W, Ning S and
Liu L: Up-regulation of plasma lncRNA CACS15 distinguished
early-stage oral squamous cell carcinoma patient. Oral Dis.
26:1619–1624. 2019. View Article : Google Scholar
|
11
|
Sheng L and Wei R: Long Non-Coding
RNA-CASC15 promotes cell proliferation, migration, and invasion by
activating Wnt/β-catenin signaling pathway in melanoma.
Pathobiology. 87:20–29. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang YN, Liu B, Jiang T and Li Q: Long
non-coding RNA CASC15 promotes proliferation and induces apoptosis
of cervical cancer cells through targeting miR-101-3p. Eur Rev Med
Pharmacol Sci. 24:86272020.PubMed/NCBI
|
13
|
Li Y, Shi X, Yang W, Lu Z, Wang P, Chen Z
and He J: Transcriptome profiling of lncRNA and co-expression
networks in esophageal squamous cell carcinoma by RNA sequencing.
Tumour Biol. 37:13091–13100. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen XY, Zhang J and Zhu JS: The role of
m6A RNA methylation in human cancer. Mol Cancer.
18:1032019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dai D, Wang H, Zhu L, Jin H and Wang X:
N6-methyladenosine links RNA metabolism to cancer progression. Cell
Death Dis. 9:1242018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C,
Huang H, Nachtergaele S, Dong L, Hu C, et al: FTO plays an
oncogenic role in acute myeloid leukemia as a
N6-methyladenosine RNA demethylase. Cancer Cell.
31:127–141. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Q, Chen C, Ding Q, Zhao Y, Wang Z,
Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, et al: METTL3-mediated
m6A modification of HDGF mRNA promotes gastric cancer
progression and has prognostic significance. Gut. 69:1193–1205.
2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yoneda R, Ueda N, Uranishi K, Hirasaki M
and Kurokawa R: Long noncoding RNA pncRNA-D reduces cyclin
D1 gene expression and arrests cell cycle through RNA
m6A modification. J Biol Chem. 295:5626–5639. 2020.
View Article : Google Scholar
|
19
|
Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W,
Lu S, Xu D, Wu Y, Chen Q, et al: LNC942 promoting METTL14-mediated
m(6)A methylation in breast cancer cell proliferation and
progression. Oncogene. 39:5358–5372. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhu L, Zhu Y, Han S, Chen M, Song P, Dai
D, Xu W, Jiang T, Feng L, Shin VY, et al: Impaired autophagic
degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in
gastric cancer. Cell Death Dis. 10:3832019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu S, Huang M, Chen Z, Chen J, Chao Q,
Yin X and Quan M: FTO promotes cell proliferation and migration in
esophageal squamous cell carcinoma through up-regulation of MMP13.
Exp Cell Res. 389:1118942020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Takashima K, Fujii S, Komatsuzaki R,
Komatsu M, Takahashi M, Kojima T, Daiko H, Minashi K, Chiwaki F,
Muto M, et al: CD24 and CK4 are upregulated by SIM2, and are
predictive biomarkers for chemoradiotherapy and surgery in
esophageal cancer. Int J Oncol. 56:835–847. 2020.PubMed/NCBI
|
23
|
Tamaoki M, Komatsuzaki R, Komatsu M,
Minashi K, Aoyagi K, Nishimura T, Chiwaki F, Hiroki T, Daiko H,
Morishita K, et al: Multiple roles of single-minded 2 in esophageal
squamous cell carcinoma and its clinical implications. Cancer Sci.
109:1121–1134. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Su P, Wen S, Zhang Y, Li Y, Xu Y, Zhu Y,
Lv H, Zhang F, Wang M and Tian Z: Identification of the key genes
and pathways in esophageal carcinoma. Gastroenterol Res Pract.
2016:29681062016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rice TW, Blackstone EH and Rusch VW: 7th
edition of the AJCC Cancer Staging Manual: Esophagus and
esophagogastric junction. Ann Surg Oncol. 17:1721–1724. 2010.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Rusch VW, Rice TW, Crowley J, Blackstone
EH, Rami-Porta R and Goldstraw P: The seventh edition of the
American Joint Committee on Cancer/International Union Against
Cancer Staging Manuals: The new era of data-driven revisions. J
Thorac Cardiovasc Surg. 139:819–821. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chomczynski P and Sacchi N: The
single-step method of RNA isolation by acid guanidinium
thiocyanate-phenol-chloroform extraction: Twenty-something years
on. Nat Protoc. 1:581–585. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Euhus DM, Hudd C, LaRegina MC and Johnson
FE: Tumor measurement in the nude mouse. J Surg Oncol. 31:229–234.
1986. View Article : Google Scholar : PubMed/NCBI
|
30
|
Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun
L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine
demethylase FTO promotes breast tumor progression through
inhibiting BNIP3. Mol Cancer. 18:462019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lagergren J, Smyth E, Cunningham D and
Lagergren P: Oesophageal cancer. Lancet. 390:2383–2396. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee NP, Chan CM, Tung LN, Wang HK and Law
S: Tumor xenograft animal models for esophageal squamous cell
carcinoma. J Biomed Sci. 25:662018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xue MY and Cao HX: Long non-coding RNA
CASC15 promotes nasopharyngeal carcinoma cell proliferation and
metastasis by downregulating miR-101-3p. Eur Rev Med Pharmacol Sci.
23:8897–8904. 2019.PubMed/NCBI
|
34
|
Yu X, Wang ZL, Han CL, Wang MW, Jin Y, Jin
XB and Xia QH: LncRNA CASC15 functions as an oncogene by sponging
miR-130b-3p in bladder cancer. Eur Rev Med Pharmacol Sci.
23:9814–9820. 2019.PubMed/NCBI
|
35
|
Zhang X, Wang W, Zhu W, Dong J, Cheng Y,
Yin Z and Shen F: Mechanisms and functions of long non-coding RNAs
at multiple regulatory levels. Int J Mol Sci. 20:55732019.
View Article : Google Scholar
|
36
|
Yao RW, Wang Y and Chen LL: Cellular
functions of long noncoding RNAs. Nat Cell Biol. 21:542–551. 2019.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Akhade VS, Pal D and Kanduri C: Long
noncoding RNA: Genome organization and mechanism of action. Adv Exp
Med Biol. 1008:47–74. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chang G, Leu JS, Ma L, Xie K and Huang S:
Methylation of RNA N6-methyladenosine in modulation of
cytokine responses and tumorigenesis. Cytokine. 118:35–41. 2019.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Xiong X, Li X and Yi C:
N(1)-methyladenosine methylome in messenger RNA and non-coding RNA.
Curr Opin Chem Biol. 45:179–186. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pan T: N6-methyl-adenosine modification in
messenger and long non-coding RNA. Trends Biochem Sci. 38:204–209.
2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang
Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in
nuclear RNA is a major substrate of the obesity-associated FTO. Nat
Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Fu Y, Jia G, Pang X, Wang RN, Wang X, Li
CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, et al: FTO-mediated
formation of N6-hydroxymethyladenosine and N6-formyladenosine in
mammalian RNA. Nat Commun. 4:17982013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nagaki Y, Motoyama S, Yamaguchi T,
Hoshizaki M, Sato Y, Sato T, Koizumi Y, Wakita A, Kawakita Y, Imai
K, et al: m6 A demethylase ALKBH5 promotes proliferation
of esophageal squamous cell carcinoma associated with poor
prognosis. Genes Cells. 25:547–561. 2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Nakamura K, Komatsu M, Chiwaki F, Takeda
T, Kobayashi Y, Banno K, Aoki D, Yoshida T and Sasaki H: SIM2l
attenuates resistance to hypoxia and tumor growth by
transcriptional suppression of HIF1A in uterine cervical squamous
cell carcinoma. Sci Rep. 7:145742017. View Article : Google Scholar : PubMed/NCBI
|