1
|
Hall KT, Boumsell L, Schultze JL,
Boussiotis VA, Dorfman DM, Cardoso AA, Bensussan A, Nadler LM and
Freeman GJ: Human CD100, a novel leukocyte semaphorin that promotes
B-cell aggregation and differentiation. Proc Natl Acad Sci USA.
93:11780–11785. 1996. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maleki KT, Cornillet M and Björkström NK:
Soluble SEMA4D/CD100: A novel immunoregulator in infectious and
inflammatory diseases. Clin Immunol. 163:52–59. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mou P, Zeng Z, Li Q, Liu X, Xin X,
Wannemacher KM, Ruan C, Li R, Brass LF and Zhu L: Identification of
a calmodulin-binding domain in Sema4D that regulates its exodomain
shedding in platelets. Blood. 121:4221–4230. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Motani K and Kosako H: Activation of
stimulator of interferon genes (STING) induces ADAM17-mediated
shedding of the immune semaphorin SEMA4D. J Biol Chem.
293:7717–7726. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ch'ng ES and Kumanogoh A: Roles of Sema4D
and Plexin-B1 in tumor progression. Mol Cancer. 9:2512010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Nishide M, Nojima S, Ito D, Takamatsu H,
Koyama S, Kang S, Kimura T, Morimoto K, Hosokawa T, Hayama Y, et
al: Semaphorin 4D inhibits neutrophil activation and is involved in
the pathogenesis of neutrophil-mediated autoimmune vasculitis. Ann
Rheum Dis. 76:1440–1448. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xiao C, Luo Y, Zhang C, Zhu Z, Yang L,
Qiao H, Fu M, Wang G, Yao X and Li W: Negative regulation of
dendritic cell activation in psoriasis mediated via
CD100-plexin-B2. J Pathol. 250:409–419. 2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tsuda T, Nishide M, Maeda Y, Hayama Y,
Koyama S, Nojima S, Takamatsu H, Okuzaki D, Morita T, Nakatani T,
et al: Pathological and therapeutic implications of
eosinophil-derived semaphorin 4D in eosinophilic chronic
rhinosinusitis. J Allergy Clin Immunol. 145:843–854.e4. 2020.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhu L, Bergmeier W, Wu J, Jiang H, Stalker
TJ, Cieslak M, Fan R, Boumsell L, Kumanogoh A, Kikutani H, et al:
Regulated surface expression and shedding support a dual role for
semaphorin 4D in platelet responses to vascular injury. Proc Natl
Acad Sci USA. 104:1621–1626. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou H, Yang YH, Binmadi NO, Proia P and
Basile JR: The hypoxia-inducible factor-responsive proteins
semaphorin 4D and vascular endothelial growth factor promote tumor
growth and angiogenesis in oral squamous cell carcinoma. Exp Cell
Res. 318:1685–1698. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sierra JR, Corso S, Caione L, Cepero V,
Conrotto P, Cignetti A, Piacibello W, Kumanogoh A, Kikutani H,
Comoglio PM, et al: Tumor angiogenesis and progression are enhanced
by Sema4D produced by tumor-associated macrophages. J Exp Med.
205:1673–1685. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou H, Binmadi NO, Yang YH, Proia P and
Basile JR: Semaphorin 4D cooperates with VEGF to promote
angiogenesis and tumor progression. Angiogenesis. 15:391–407. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ruan SS, Li RC, Han Q, Liu J, Li GL, Song
YQ and Wu G: Expression and clinical significance of Semaphorin4D
in non-small cell lung cancer and its impact on malignant behaviors
of A549 lung cancer cells. J Huazhong Univ Sci Technolog Med Sci.
34:491–496. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu H, Yang Y, Xiao J, Yang S, Liu Y, Kang
W, Li X and Zhang F: Semaphorin 4D expression is associated with a
poor clinical outcome in cervical cancer patients. Microvasc Res.
93:1–8. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen Y, Zhang L, Lv R and Zhang WQ:
Overexpression of Semaphorin4D indicates poor prognosis and prompts
monocyte differentiation toward M2 macrophages in epithelial
ovarian cancer. Asian Pac J Cancer Prev. 14:5883–5890. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Simon JM, Mokhtari K, Genestie C, Bissery
A, Mazeron JJ and Jaillon P: Hypoxia-inducible factor lalpha
(HIF-1α) and carbonic anhydrase IX (CA9) expressions in
glioblastoma multiform to predict response to radiation therapy. J
Clin Oncol. 23 (Suppl 16):S15122005. View Article : Google Scholar
|
17
|
Ch'ng E, Tomita Y, Zhang B, He J, Hoshida
Y, Qiu Y, Morii E, Nakamichi I, Hamada K, Ueda T and Aozasa K:
Prognostic significance of CD100 expression in soft tissue sarcoma.
Cancer. 110:164–172. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kato S, Kubota K, Shimamura T, Shinohara
Y, Kobayashi N, Watanabe S, Yoneda M, Inamori M, Nakamura F,
Ishiguro H, et al: Semaphorin 4D, a lymphocyte semaphorin, enhances
tumor cell motility through binding its receptor, plexinB1, in
pancreatic cancer. Cancer Sci. 102:2029–2037. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Soone J, Chen Y, Shustef EM and Scott GA:
Sema4D, the ligand for Plexin B1, suppresses c-Met activation and
migration and promotes melanocyte survival and growth. J Invest
Dermatol. 132:1230–1238. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang H, Chen C, Sun Q, Wu J, Qiu L, Gao
C, Liu W, Yang J, Jun N and Dong J: The role of semaphorin 4D in
tumor development and angiogenesis in human breast cancer. Onco
Targets Ther. 9:5737–5750. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ding X, Qiu L, Zhang L, Xi J, Li D, Huang
X, Zhao Y, Wang X and Sun Q: The role of semaphorin 4D as a
potential biomarker for antiangiogenic therapy in colorectal
cancer. Onco Targets Ther. 9:1189–1204. 2016.PubMed/NCBI
|
22
|
Basile JR, Holmbeck K, Bugge TH and
Gutkind JS: MT1-MMP controls tumor-induced angiogenesis through the
release of semaphorin 4D. J Biol Chem. 282:6899–6905. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Granziero L, Circosta P, Scielzo C,
Frisaldi E, Stella S, Geuna M, Giordano S, Ghia P and
Caligaris-Cappio F: CD100/Plexin-B1 interactions sustain
proliferation and survival of normal and leukemic CD5+ B
lymphocytes. Blood. 101:1962–1969. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Deaglio S, Vaisitti T, Bergui L, Bonello
L, Horenstein AL, Tamagnone L, Boumsell L and Malavasi F: CD38 and
CD100 lead a network of surface receptors relaying positive signals
for B-CLL growth and survival. Blood. 105:3042–3050. 2005.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang C, Qiao H, Guo W, Liu Y, Yang L, Liu
Y, Jin B, Fu M, Wang G and Li W: CD100-plexin-B1 induces
epithelial-mesenchymal transition of head and neck squamous cell
carcinoma and promotes metastasis. Cancer Lett. 455:1–13. 2019.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Clavijo PE, Friedman J, Robbins Y, Moore
EC, Smith E, Zauderer M, Evans EE and Allen CT: Semaphorin4D
inhibition improves response to immune-checkpoint blockade via
attenuation of MDSC recruitment and function. Cancer Immunol Res.
7:282–291. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zuazo-Gaztelu I, Pàez-Ribes M, Carrasco P,
Martín L, Soler A, Martínez-Lozano M, Pons R, Llena J, Palomero L,
Graupera M and Casanovas O: Antitumor effects of anti-Semaphorin 4D
antibody unravel a novel proinvasive mechanism of
vascular-targeting agents. Cancer Res. 79:5328–5341. 2019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Brillantino C, Rossi E, Bifano D, Minelli
R, Tamasi S, Mamone R, Bignardi E, Zeccolini R, Zeccolini M and
Vallone G: An unusual onset of pediatric acute lymphoblastic
leukemia. J Ultrasound. Apr 23–2020.(Epub ahead of print).
View Article : Google Scholar
|
29
|
Cheson BD, Cassileth PA, Head DR, Schiffer
CA, Bennett JM, Bloomfield CD, Brunning R, Gale RP, Grever MR,
Keating MJ, et al: Report of the national cancer
institute-sponsored workshop on definitions of diagnosis and
response in acute myeloid leukemia. J Clin Oncol. 8:813–819. 1990.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cortes JE and Kantarjian HM: Acute
lymphoblastic leukemia. A comprehensive review with emphasis on
biology and therapy. Cancer. 76:2393–2417. 1995. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chung DC: The genetic basis of colorectal
cancer: Insights into critical pathways of tumorigenesis.
Gastroenterology. 119:854–865. 2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhou W, Fu XQ, Liu J and Yu HG: RNAi
knockdown of the Akt1 gene increases the chemosensitivity of
gastric cancer cells to cisplatin both in vitro and in vivo. Regul
Pept. 176:13–21. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Arboleda MJ, Lyons JF, Kabbinavar FF, Bray
MR, Snow BE, Ayala R, Danino M, Karlan BY and Slamon DJ:
Overexpression of AKT2/protein kinase Bbeta leads to up-regulation
of beta1 integrins, increased invasion, and metastasis of human
breast and ovarian cancer cells. Cancer Res. 63:196–206.
2003.PubMed/NCBI
|
34
|
Lee MW, Kim DS, Lee JH, Lee BS, Lee SH,
Jung HL, Sung KW, Kim HT, Yoo KH and Koo HH: Roles of AKT1 and AKT2
in non-small cell lung cancer cell survival, growth, and migration.
Cancer Sci. 102:1822–1828. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Schlieman MG, Fahy BN, Ramsamooj R,
Beckett L and Bold RJ: Incidence, mechanism and prognostic value of
activated AKT in pancreas cancer. Br J Cancer. 89:2110–2115. 2003.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Fan DP, Zhang YM, Hu XC, Li JJ and Zhang
W: Activation of AKT/ERK confers non-small cell lung cancer cells
resistance to vinorelbine. Int J Clin Exp Patho. 7:134–143.
2013.
|
37
|
Lin Z, Zhang C, Zhang M, Xu D, Fang Y,
Zhou Z, Chen X, Qin N and Zhang X: Targeting cadherin-17
inactivates Ras/Raf/MEK/ERK signaling and inhibits cell
proliferation in gastric cancer. PLoS One. 9:e852962014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Park JI: Growth arrest signaling of the
Raf/MEK/ERK pathway in cancer. Front Biol (Beijing). 9:95–103.
2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Fu S, Fan L, Pan X, Sun Y and Zhao H:
Integrin αv promotes proliferation by activating ERK 1/2 in the
human lung cancer cell line A549. Mol Med Rep. 11:1266–1271. 2015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei L, Li H, Tamagnone L and You H:
Semaphorins and their receptors in hematological malignancies.
Front Oncol. 9:3822019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Basile JR, Gavard J and Gutkind JS:
Plexin-B1 utilizes RhoA and Rho kinase to promote the
integrin-dependent activation of Akt and ERK and endothelial cell
motility. J Biol Chem. 282:34888–34895. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Engelman JA, Luo J and Cantley LC: The
evolution of phosphatidylinositol 3-kinases as regulators of growth
and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Tan F, Huang Y, Pei Q, Liu H, Pei H and
Zhu H: Matrix stiffness mediates stemness characteristics via
activating the Yes-associated protein in colorectal cancer cells. J
Cell Biochem. Sep 14–2018.(Epub ahead of print).
|
44
|
Jeong KY: Inhibiting focal adhesion
kinase: A potential target for enhancing therapeutic efficacy in
colorectal cancer therapy. World J Gastrointest Oncol. 10:290–292.
2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zheng Q, Wang B, Gao J, Xin N, Wang W,
Song X, Shao Y and Zhao C: CD155 knockdown promotes apoptosis via
AKT/Bcl-2/Bax in colon cancer cells. J Cell Mol Med. 22:131–140.
2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ai X, Wu Y, Zhang W, Zhang Z, Jin G, Zhao
J, Yu J, Lin Y, Zhang W, Liang H, et al: Targeting the ERK pathway
reduces liver metastasis of Smad4-inactivated colorectal cancer.
Cancer Biol Ther. 14:1059–1067. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zinn RL, Gardner EE, Marchionni L, Murphy
SC, Dobromilskaya I, Hann CL and Rudin CM: ERK phosphorylation is
predictive of resistance to IGF-1R inhibition in small cell lung
cancer. Mol Cancer Ther. 12:1131–1139. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yan L, Gu H, Li J, Xu M, Liu T, Shen Y,
Chen B and Zhang G: RKIP and 14-3-3ε exert an opposite effect on
human gastric cancer cells SGC7901 by regulating the ERK/MAPK
pathway differently. Dig Dis Sci. 58:389–396. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Koyama T, Ogawara K, Kasamatsu A, Okamoto
A, Kasama H, Minakawa Y, Shimada K, Yokoe H, Shiiba M, Tanzawa H
and Uzawa K: ANGPTL3 is a novel biomarker as it activates ERK/MAPK
pathway in oral cancer. Cancer Med. 4:759–769. 2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lu Q, Dong N, Wang Q, Yi W, Wang Y, Zhang
S, Gu H, Zhao X, Tang X, Jin B, et al: Increased levels of plasma
soluble Sema4D in patients with heart failure. PLoS One.
8:e642652013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Derakhshandeh R, Sanadhya S, Lee Han K,
Chen H, Goloubeva O, Webb TJ and Younis RH: Semaphorin 4D in human
head and neck cancer tissue and peripheral blood: A dense fibrotic
peri-tumoral stromal phenotype. Oncotarget. 9:111262018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yang YH, Buhamrah A, Schneider A, Lin YL,
Zhou H, Bugshan A and Basile JR: Semaphorin 4D promotes skeletal
metastasis in breast cancer. PLoS One. 11:e01501512016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tamagnone L and Franzolin G: Targeting
semaphorin 4D in cancer: A look from different perspectives. Cancer
Res. 79:5146–5148. 2019. View Article : Google Scholar : PubMed/NCBI
|