Molecular features and gene expression signature of metastatic colorectal cancer (Review)
- Authors:
- Martina Poturnajova
- Tatiana Furielova
- Sona Balintova
- Silvia Schmidtova
- Lucia Kucerova
- Miroslava Matuskova
-
Affiliations: Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia, Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia - Published online on: February 2, 2021 https://doi.org/10.3892/or.2021.7961
- Article Number: 10
-
Copyright: © Poturnajova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Hu J, Yang D, Cosgrove DP and Xu R: Pattern of distant metastases in colorectal cancer: A SEER based study. Oncotarget. 6:38658–38666. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, Coussens LM, Gast CE, Geltzeiler CB, Hansen L, et al: Colorectal cancer liver metastasis: Evolving paradigms and future directions. Cell Mol Gastroenterol Hepatol. 3:163–173. 2017. View Article : Google Scholar : PubMed/NCBI | |
Welch DR and Hurst DR: Defining the hallmarks of metastasis. Cancer Res. 79:3011–3027. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lambert AW, Pattabiraman DR and Weinberg RA: Emerging biological principles of metastasis. Cell. 168:670–691. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hirata A, Hatano Y, Niwa M, Hara A and Tomita H: Heterogeneity of colon cancer stem cells. Adv Exp Med Biol. 1139:115–126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tauriello DV, Calon A, Lonardo E and Batlle E: Determinants of metastatic competency in colorectal cancer. Mol Oncol. 11:97–119. 2017. View Article : Google Scholar : PubMed/NCBI | |
Puccini A, Xiu J, Goldberg RM, Grothey A, Shields AF, Salem ME, Seeber A, Battaglin F, Berger MD, El-Deiry WS, et al: Molecular differences between lymph nodes (LNs) and distant metastases (mets) in colorectal cancer (CRC). J Clin Oncol. 37 (Suppl 15):S31302019. View Article : Google Scholar | |
Kamal Y, Schmit SL, Hoehn HJ, Amos CI and Frost HR: Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes. Cancer Res. 79:4227–4241. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pretzsch E, Bösch F, Neumann J, Ganschow P, Bazhin A, Guba M, Werner J and Angele M: Mechanisms of metastasis in colorectal cancer and metastatic organotropism: Hematogenous versus peritoneal spread. J Oncol. 2019:74071902019. View Article : Google Scholar : PubMed/NCBI | |
Tariq K and Ghias K: Colorectal cancer carcinogenesis: A review of mechanisms. Cancer Biol Med. 13:120–135. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ramaswamy S, Ross KN, Lander ES and Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet. 33:49–54. 2003. View Article : Google Scholar : PubMed/NCBI | |
Naxerova K and Jain RK: Using tumour phylogenetics to identify the roots of metastasis in humans. Nat Rev Clin Oncol. 12:258–272. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, Marjoram P, Siegmund K, Press MF, Shibata D and Curtis C: A big bang model of human colorectal tumor growth. Nat Genet. 47:209–216. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A, et al: Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet. 51:1113–1122. 2019. View Article : Google Scholar : PubMed/NCBI | |
Holch JW, Ricard I, Stintzing S, Modest DP and Heinemann V: The relevance of primary tumour location in patients with metastatic colorectal cancer: A meta-analysis of first-line clinical trials. Eur J Cancer. 70:87–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A and Brodt P: The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol. 170:1781–1792. 2007. View Article : Google Scholar : PubMed/NCBI | |
Riihimäki M, Hemminki A, Sundquist J and Hemminki K: Patterns of metastasis in colon and rectal cancer. Sci Rep. 6:297652016. View Article : Google Scholar : PubMed/NCBI | |
Prasanna T, Craft PS, Chua YJ, Karapetis CS, Gibbs P, Wong R, Tie J, Roder DM, Price TJ, Padbury R, et al: The outcome of patients (pts) with metastatic colorectal cancer (mCRC) based on site of metastases (mets) and the impact of molecular markers and site of primary cancer on metastatic pattern. J Clin Oncol. 35 (Suppl 15):S35602017. View Article : Google Scholar | |
Sadahiro S, Suzuki S, Ishikawa K, Nakamura T, Tanaka Y, Ishizu K, Yasuda S, Makuuchi H and Murayama C: Estimation of the time of pulmonary metastasis in colorectal cancer patients with isolated synchronous liver metastasis. Jpn J Clin Oncol. 35:18–22. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wang D, Zhang C, Zhang Z, Chen X, Lian J, Liu J, Wang G, Yuan W, Sun Z, et al: Identification of liver metastasis-associated genes in human colon carcinoma by mRNA profiling. Chin J Cancer Res. 30:633–646. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schweiger T, Liebmann-Reindl S, Glueck O, Starlinger P, Laengle J, Birner P, Klepetko W, Pils D, Streubel B and Hoetzenecker K: Mutational profile of colorectal cancer lung metastases and paired primary tumors by targeted next generation sequencing: Implications on clinical outcome after surgery. J Thorac Dis. 10:6147–6157. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hugen N, van de Velde CJH, de Wilt JHW and Nagtegaal ID: Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 25:651–657. 2014. View Article : Google Scholar : PubMed/NCBI | |
Andres SF, Williams KN and Rustgi AK: The molecular basis of metastatic colorectal cancer. Curr Colorectal Cancer Rep. 14:69–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinber RA: The hallmark of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinber RA: The hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Smedt L, Palmans S, Andel D, Govaere O, Boeckx B, Smeets D, Galle E, Wouters J, Barras D, Suffiotti M, et al: Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching. Br J Cancer. 116:58–65. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheung KJ, Gabrielson E, Werb Z and Ewald AJ: Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 155:1639–1651. 2013. View Article : Google Scholar : PubMed/NCBI | |
Revenu C and Gilmour D: EMT 2.0: Shaping epithelia through collective migration. Curr Opin Genet Dev. 19:338–342. 2009. View Article : Google Scholar : PubMed/NCBI | |
Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, Zhou Y, Xie Y and Pearson GW: An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 125:1927–1943. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E and Weinberg RA: Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 525:256–260. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A and Kirchner T: Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs. 179:56–65. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye XC, Mani SA and Ellis LM: Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 1:5–16. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, Ng L, Cheung LW, Lan XR, Lan HY, et al: A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 6:603–615. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakano M, Kikushige Y, Miyawaki K, Kunisaki Y, Mizuno S, Takenaka K, Tamura S, Okumura Y, Ito M, Ariyama H, et al: Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene. 38:780–793. 2019. View Article : Google Scholar : PubMed/NCBI | |
Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, Iinuma H, Kanazawa T, Tanaka T, Konishi T, et al: Gene expression of mesenchyme forkhead 1 (FOXC2) significantly correlates with the degree of lymph node metastasis in colorectal cancer. Int J Surg. 96:207–216. 2011. View Article : Google Scholar | |
Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A and Postigo A: β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA. 108:19204–19209. 2011. View Article : Google Scholar : PubMed/NCBI | |
Han X, Fang X, Lou X, Hua D, Ding W, Foltz G, Hood L, Yuan Y and Lin B: Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS One. 7:e413352012. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Ge J, Wang X, Qian X, Zhang C and Li X: OCT4 regulates epithelial-mesenchymal transition and its knockdown inhibits colorectal cancer cell migration and invasion. Oncol Rep. 29:155–160. 2013. View Article : Google Scholar : PubMed/NCBI | |
Meng HM, Zheng P, Wang XY, Liu C, Sui HM, Wu SJ, Zhou J, Ding YQ and Li J: Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther. 9:295–302. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu MH, Huang CC, Pan MR, Chen HH and Hung WC: Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res. 18:6416–6425. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ono H, Imoto I, Kozakiet K, Tsuda H, Matsui T, Kurasawa Y, Muramatsu T, Sugihara K and Inazawa J: SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene. 31:4923–4934. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Sawada G, Kurashige J, Uchi R, Matsumura T, Ueo H, Takano Y, Akiyoshi S, Eguchi H, Sudo T, et al: Paired related homoeobox 1, a new EMT inducer, is involved in metastasis and poor prognosis in colorectal cancer. Br J Cancer. 109:307–311. 2013. View Article : Google Scholar : PubMed/NCBI | |
Belton A, Gabrovsky A, Bae YK, Reeves R, Iacobuzio-Donahue C, Huso DL and Resar LM: HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS One. 7:e300342012. View Article : Google Scholar : PubMed/NCBI | |
Diesch J, Sanij E, Gilan O, Love C, Tran H, Fleming NI, Ellul J, Amalia M, Haviv I, Pearson RB, et al: Widespread FRA1-dependent control of mesenchymal transdifferentiation programs in colorectal cancer cells. PLoS One. 9:e889502014. View Article : Google Scholar : PubMed/NCBI | |
Toiyama Y, Yasuda H, Saigusa S, Tanaka K, Inoue Y, Goel A and Kusunoki M: Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis. 34:2548–2557. 2013. View Article : Google Scholar : PubMed/NCBI | |
Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H and Grünert S: Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: Dissection of Ras signaling pathways. J Cell Biol. 156:299–313. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H and Mikulitz W: Molecular aspects of epithelial cell plasticity: Implications for local tumor invasion and metastasis. Mutat Res. 566:9–20. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maffeis V, Nicolè L and Cappellesso R: RAS, cellular plasticity, and tumor budding in colorectal cancer. Front Oncol. 9:12552019. View Article : Google Scholar : PubMed/NCBI | |
Wan Z, Chai R, Yuan H, Chen B, Dong Q, Zheng B, Mou X, Pan W, Tu Y, Yang Q, et al: MEIS2 promotes cell migration and invasion in colorectal cancer. Oncol Rep. 42:213–223. 2019.PubMed/NCBI | |
Sugai T, Yamada N, Eizuka M, Sugimoto R, Uesugi N, Osakabe M, Ishida K, Otsuka K, Sasaki A and Matsumoto T: Vascular invasion and stromal S100A4 expression at the invasive front of colorectal cancer are novel determinants and tumor prognostic markers. J Cancer. 8:1552–1561. 2017. View Article : Google Scholar : PubMed/NCBI | |
Varga J and Greten FR: Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol. 19:1133–1141. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ishay-Ronen D, Diepenbruck M, Kalathur RKR, Sugiyama N, Tiede S, Ivanek R, Bantug G, Morini MF, Wang J, Hess C and Christofori G: Gain fat-lose metastasis: Converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell. 35:17–32.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nieto MA, Huang RY, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
Celià-Terrassa T and Kang Y: Distinctive properties of metastasis-initiating cells. Genes Dev. 30:892–908. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tam WL and Weinberg RA: The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 19:1438–1449. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mohd-Sarip A, Teeuwssen M, Bot AG, De Herdt MJ, Willems SM, Baatenburg de Jong RJ, Looijenga LHJ, Zatreanu D, Bezstarosti K, van Riet J, et al: DOC1-dependent recruitment of NURD reveals antagonism with SWI/SNF during epithelial-mesenchymal transition in oral cancer cells. Cell Rep. 20:61–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Report. 2:78–91. 2013. View Article : Google Scholar | |
Biddle A, Gammon L, Liang X, Costea DE and Mackenzie IC: Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. EBioMedicine. 4:138–145. 2016. View Article : Google Scholar : PubMed/NCBI | |
Katsuno Y, Meyer DS, Zhang Z, Shokat KM, Akhurst RJ, Miyazono K and Derynck R: Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci Signal. 12:eaau85442019. View Article : Google Scholar : PubMed/NCBI | |
Obenauf AC and Massagué J: Surviving at a distance: Organ specific metastasis. Trends Cancer. 1:76–91. 2015. View Article : Google Scholar : PubMed/NCBI | |
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P and Volinia S: Heterogeneity in circulating tumor cells: The relevance of the stem-cell subset. Cancers (Basel). 11:4832019. View Article : Google Scholar | |
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al: The consensus molecular subtypes of colorectal cancer. Nat Med. 21:1350–1356. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kauffmann A, Rosselli F, Lazar V, Winnepenninckx V, Mansuet-Lupo A, Dessen P, van den Oord JJ, Spatz A and Sarasin A: High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 27:565–573. 2008. View Article : Google Scholar : PubMed/NCBI | |
Trinh A, Lädrach C, Dawson HE, Ten Hoorn S, Kuppen PJ, Reimers MS, Koopman M, Punt CJ, Lugli A, Vermeulen L and Zlobec I: Tumour budding is associated with the mesenchymal colon cancer subtype and RAS/RAF mutations: A study of 1320 colorectal cancers with consensus molecular subgroup. Br J Cancer. 119:1244–1251. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sveen A, Cremolini C and Dienstmann R: Predictive modeling in colorectal cancer: Time to move beyond consensus molecular subtypes. Ann Oncol. 30:1682–1685. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q and Cao D: Cancer stem cells in progression of colorectal cancer. Oncotarget. 9:33403–33415. 2017. View Article : Google Scholar : PubMed/NCBI | |
Carmon KS, Gong X, Yi J, Wu L, Thomas A, Moore CM, Masuho I, Timson DJ, Martemyanov KA and Liu QJ: LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway. J Biol Chem. 292:14989–15001. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lam CS, Cheung AH, Wong SK, Wan TM, Ng L, Chow AK, Cheng NS, Pak RC, Li HS, Man JH, et al: Prognostic significance of CD26 in patients with colorectal cancer. PLoS One. 9:e985822014. View Article : Google Scholar : PubMed/NCBI | |
Mortier A, Gouwy M, Van Damme J, Proost P and Struyf S: CD26/dipeptidylpeptidase IV-chemokine interactions: Double-edged regulation of inflammation and tumor biology. J Leukoc Biol. 99:955–969. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Dong L and Chang P: CD44v6 engages in colorectal cancer progression. Cell Death Dis. 10:302019. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Ong SE, Badu-Nkansah K, Schindler J, White FM and Hynes RO: CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci USA. 108:1379–1384. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mohamed SY, Kaf RM, Ahmed MM, Elwan A, Ashour HR and Ibrahim A: The prognostic value of cancer stem cell markers (Notch1, ALDH1, and CD44) in primary colorectal carcinoma. J Gastrointest Cancer. 50:824–837. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jackstadt R, van Hooff SR, Leach JD, Cortes-Lavaud X, Lohuis JO, Ridgway RA, Wouters VM, Roper J, Kendall TJ, Roxburgh CS, et al: Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell. 36:319–336.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Van der Waals LM, Borel Rinkes IH and Kranenburg O: ALDH1A1 expression is associated with poor differentiation, ‘right-sidedness’ and poor survival in human colorectal cancer. PLoS One. 13:e02055362018. View Article : Google Scholar : PubMed/NCBI | |
Vázquez-Iglesias L, Barcia-Castro L, Rodríguez-Quiroga M, Páez de la Cadena M, Rodríguez-Berrocal J and Cordero OJ: Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 8:bio0416732019. View Article : Google Scholar : PubMed/NCBI | |
Dotse E and Bian Y: Isolation of colorectal cancer stem-like cells. Cytotechnology. 68:609–619. 2016. View Article : Google Scholar : PubMed/NCBI | |
De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF, et al: Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 19:614–618. 2013. View Article : Google Scholar : PubMed/NCBI | |
Testa U, Pelosi E and Castelli G: Colorectal cancer: Genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel). 6:312018. | |
Fedyanin M, Popova A, Polyanskaya E and Tjulandin S: Role of stem cells in colorectal cancer progression and prognostic and predictive characteristics of stem cell markers in colorectal cancer. Curr Stem Cell Res Ther. 12:19–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lieto E, Galizia G, Orditura M, Romano C, Zamboli A, Castellano P, Mabilia A, Auricchio A, De Vita F and Gemei M: CD26-positive/CD326-negative circulating cancer cells as prognostic markers for colorectal cancer recurrence. Oncol Lett. 9:542–550. 2015. View Article : Google Scholar : PubMed/NCBI | |
Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, et al: CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 14:342–356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang SS, Han ZP, Jing YY, Tao SF, Li TJ, Wang H, Wang Y, Li R, Yang Y, Zhao X, et al: CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med. 10:852012. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Chen L, Ma Z, Du Z, Zhao Z, Hu Z and Li Q: Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology. 145:636–646.e5. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tong K, Pellón-Cárdenas O, Sirihorachai VR, Warder BN, Kothari OA, Perekatt AO, Fokas EE, Fullem RL, Zhou A, Thackray JK, et al: Degree of tissue differentiation dictates susceptibility to BRAF-driven colorectal cancer. Cell Rep. 21:3833–3845. 2017. View Article : Google Scholar : PubMed/NCBI | |
Durinikova E, Kozovska Z, Poturnajova M, Plava J, Cierna Z, Babelova A, Bohovic R, Schmidtova S, Tomas M, Kucerova L and Matuskova M: ALDH1A3 upregulation and spontaneous metastasis formation is associated with acquired chemoresistance in colorectal cancer cells. BMC Cancer. 18:8482018. View Article : Google Scholar : PubMed/NCBI | |
Boland CR and Goel A: Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–2087.e3. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E and Rodriguez Yoldi MJ: Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci. 18:1972017. View Article : Google Scholar | |
Jung J, Kang Y, Lee YJ, Kim E, Ahn B, Lee E, Kim JY, Lee JH, Lee Y, Kim CH and Chae YS: Comparison of the mismatch repair system between primary and metastatic colorectal cancers using immunohistochemistry. J Pathol Transl Med. 51:129–136. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Swanson BJ and Frankel WL: Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagn Pathol. 12:242017. View Article : Google Scholar : PubMed/NCBI | |
Pino MS and Chung DC: The chromosomal instability pathway in colon cancer. Gastroenterology. 138:2059–2072. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thanki K, Nicholls ME, Gajjar A, Senagore AJ, Qiu S, Szabo C, Hellmich MR and Chao C: Consensus molecular subtypes of colorectal cancer and their clinical implications. Int Biol Biomed J. 3:105–111. 2017.PubMed/NCBI | |
Fumagalli A, Drost J, Suijkerbuijk SJ, van Boxtel R, de Ligt J, Offerhaus GJ, Begthel H, Beerling E, Tan EH, Sansom OJ, et al: Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci USA. 114:E2357–E2364. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Mishra L and Deng CX: The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 14:111–123. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boutin AT, Liao WT, Wang M, Hwang SS, Karpinets TV, Cheung H, Chu GC, Jiang S, Hu J, Chang K, et al: Oncogenic KRAS drives invasion and maintains metastases in colorectal cancer. Genes Dev. 31:370–382. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wenzel J, Rose K, Haghighi EB, Lamprecht C, Rauen G, Freihen V, Kesselring R, Boerries M and Hecht A: Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene. 39:3893–3909. 2020. View Article : Google Scholar : PubMed/NCBI | |
Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, Biechele TL, Gingras AC, Zheng N, Maccoss MJ, et al: Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 316:1043–1046. 2007. View Article : Google Scholar : PubMed/NCBI | |
Steffen DJ, Amornphimoltham P, Valera JLC, Taylor S, Hunter T, Tamayo P and Gutkind JS: GNAS-PKA Oncosignaling Network in Colorectal Cancer. Pharmacology. 31:lb5272017. | |
Lieu C and Kopetz S: The SRC family of protein tyrosine kinases: A new and promising target for colorectal cancer therapy. Clin Colorectal Cancer. 9:89–94. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Zhai B, Fang T, Guo X and Xu L: FXR1 is elevated in colorectal cancer and acts as an oncogene. Tumor Biol. 37:2683–2690. 2016. View Article : Google Scholar | |
Gumireddy K, Li A, Yan J, Setoyama T, Johannes GJ, Ørom UA, Tchou J, Liu Q, Zhang L, Speicher DW, et al: Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J. 32:2672–2684. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xia P, Choi AH, Deng Z, Yang Y, Zhao J, Wang Y, Hardwidge PR and Zhu G: Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas. Oncotarget. 8:14147–14157. 2017. View Article : Google Scholar : PubMed/NCBI | |
De Robertis M, Arigoni M, Loiacono L, Riccardo F, Calogero RA, Feodorova Y, Tashkova D, Belovejdov V, Sarafian V, Cavallo F and Signori E: Novel insights into Notum and glypicans regulation in colorectal cancer. Oncotarget. 6:41237–41257. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lui VW, Peyser ND, Ng PK, Hritz J, Zeng Y, Lu Y, Li H, Wang L, Gilbert BR, General IJ, et al: Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proc Natl Acad Sci USA. 111:1114–1119. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R and Kirchner T: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA. 98:10356–10361. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fodde R, Smits R and Clevers H: APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 1:55–67. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gregorieff A and Clevers H: Wnt signaling in the intestinal epithelium: From endoderm to cancer. Genes Dev. 19:877–890. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T, Jung A, Hermann K, Günther K, Hohenberger W and Kirchner T: Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract. 194:701–704. 1998. View Article : Google Scholar : PubMed/NCBI | |
Le NH, Franken P and Fodde R: Tumour-stroma interactions in colorectal cancer: Converging on beta-catenin activation and cancer stemness. Br J Cancer. 98:1886–1893. 2008. View Article : Google Scholar : PubMed/NCBI | |
Teeuwssen M and Fodde R: Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer. Cancers (Basel). 11:13682019. View Article : Google Scholar | |
Brocardo M and Henderson B: APC shuttling to the membrane, nucleus and beyond. Trends Cell Boil. 18:587–596. 2008. View Article : Google Scholar | |
Sarli L, Bottarelli L, Bader G, Iusco D, Pizzi S, Costi R, D'Adda T, Bertolani M, Roncoroni L and Bordi C: Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q. Dis Colon Rectum. 47:1467–1482. 2004. View Article : Google Scholar : PubMed/NCBI | |
Munro AJ, Lain S and Lane DP: P53 abnormalities and outcomes in colorectal cancer: A systematic review. Br J Cancer. 92:434–444. 2005. View Article : Google Scholar : PubMed/NCBI | |
Prior IA, Lewis PD and Mattos C: A comprehensive survey of Ras mutations in cancer. Cancer Res. 72:2457–2467. 2012. View Article : Google Scholar : PubMed/NCBI | |
Makrodouli E, Oikonomou E, Koc M, Andera L, Sasazuki T, Shirasawa S and Pintzas A: BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: A comparative study. Mol Cancer. 10:1182011. View Article : Google Scholar : PubMed/NCBI | |
Lemieux E, Bergeron S, Durand V, Asselin C, Saucier C and Rivard N: Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasionand metastasis. Int J Cancer. 125:1575–1586. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki D, Kurisu S and Takenawa T: Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene. 28:1570–1583. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sanz-Moreno V and Marshall CJ: The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr Opin Cell Biol. 22:690–696. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH and Ghaedi K: Signaling pathways involved in colorectal cancer progression. Cell Biosci. 9:972019. View Article : Google Scholar : PubMed/NCBI | |
Atreya CE, Sangale Z, Xu N, Matli MR, Tikishvili E, Welbourn W, Stone S, Shokat KM and Warren RS: PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival. Cancer Med. 2:496–506. 2013. View Article : Google Scholar : PubMed/NCBI | |
Day F, Muranyi A, Singh S, Shanmugam K, Williams D, Byrne D, Pham K, Palmieri M, Tie J, Grogan T, et al: A mutant BRAF V600E-specific immunohistochemical assay: Correlation with molecular mutation status and clinical outcome in colorectal cancer. Target Oncol. 10:99–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yaeger R, Cercek A, O'Reilly EM, Reidy DL, Kemeny N, Wolinsky T, Capanu M, Gollub MJ, Rosen N, Berger MF, et al: Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res. 21:1313–1320. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wong CK, Lambert AW, Ozturk S, Papageorgis P, Lopez D, Shen N, Sen Z, Abdolmaleky HM, Győrffy B, Feng H and Thiagalingam S: Targeting RICTOR sensitizes SMAD4-negative colon cancer to irinotecan. Mol Cancer Res. 18:414–423. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zou Z, Tao T, Li H and Zhu X: mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 10:312020. View Article : Google Scholar : PubMed/NCBI | |
Demkova L and Kucerova L: Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Mol Cancer. 17:262018. View Article : Google Scholar : PubMed/NCBI | |
Cui YM, Jiao HL, Ye YP, Chen CM, Wang JX, Tang N, Li TT, Lin J, Qi L, Wu P, et al: FOXC2 promotes colorectal cancer metastasis by directly targeting MET. Oncogene. 34:4379–4390. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, Birchmeier W and Schlag PM: MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 15:59–67. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pichorner A, Sack U, Kobelt D, Kelch I, Arlt F, Smith J, Walther W, Schlag PM and Stein U: In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clin Exp Metastasis. 29:573–583. 2012. View Article : Google Scholar : PubMed/NCBI | |
Juneja M, Kobelt D, Walther W, Voss C, Smith J, Specker E, Neuenschwander M, Gohlke B, Dahlmann M, Radetzki S, et al: Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biol. 15:e20007842017. View Article : Google Scholar : PubMed/NCBI | |
Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ, DeNobile J, Soballe P, Simon R, Wright G, et al: Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomark Prev. 12:755–762. 2003. | |
Baran B, Mert Ozupek N, Yerli Tetik N, Acar E, Bekcioglu O and Baskin Y: Difference between left-sided and right-sided colorectal cancer: A focused review of literature. Gastroenterol Res. 11:264–273. 2018. View Article : Google Scholar | |
Lee MS, Menter DG and Kopetz S: Right versus left colon cancer biology: Integrating the consensus molecular subtypes. J Natl Compr Canc Netw. 15:411–419. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weinberg BA: Anti-EGFR therapy in right-sided metastatic colorectal cancer: Right or wrong? J Natl Compr Canc Netw. 16:1547–1548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Loree JM, Pereira AAL, Lam M, Willauer AN, Raghav K, Dasari A, Morris VK, Advani S, Menter DG, Eng C, et al: Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin Cancer Res. 24:1062–1072. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hugen N, Brown G, Glynne-Jones R, de Wilt JH and Nagtegaal ID: Advances in the care of patients with mucinous colorectal cancer. Nat Rev Clin Oncol. 13:361–369. 2016. View Article : Google Scholar : PubMed/NCBI | |
Esterházy D, Canesso MC, Mesin L, Muller PA, de Castro TB, Lockhart A, ElJalby M, Faria AM and Mucida D: Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 569:126–130. 2019. View Article : Google Scholar : PubMed/NCBI | |
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ and Morrison SJ: Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS, et al: The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deschoolmeester V, Baay M, Van Marck E, Weyler J, Vermeulen P, Lardon F and Vermorken JB: Tumor infiltrating lymphocytes: An intriguing player in the survival of colorectal cancer patients. BMC Immunol. 11:192010. View Article : Google Scholar : PubMed/NCBI | |
Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C and Iacopetta B: Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 27:186–192. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, Tariverdian M, Benner A and von Knebel Doeberitz M: Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 134:988–997. 2008. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI | |
Kreidieh M, Mukherji D, Temraz S and Shamseddine A: Expanding the scope of immunotherapy in colorectal cancer: Current clinical approaches and future directions. Biomed Res Int. 2020:90372172020. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G, Galluzzi L, Zitvogel L and Fridman WH: Colorectal cancer: The first neoplasia found to be under immunosurveillance and the last one to respond to immunotherapy? Oncoimmunology. 4:e10585972015. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair DEfiCiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M, Church SE, Maby P, Vasaturo A, Angelova M, et al: The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Trans Med. 8:327ra262016. View Article : Google Scholar | |
Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, Lafontaine L, Haicheur N, Marliot F, Debetancourt D, et al: Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J Natl Cancer Inst. 110:97–108. 2018. View Article : Google Scholar | |
Girardin A, McCall J, Black MA, Edwards F, Phillips V, Taylor ES, Reeve AE and Kemp RA: Inflammatory and regulatory T cells contribute to a unique immune microenvironment in tumor tissue of colorectal cancer patients. Int J Cancer. 132:1842–1850. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pedrosa L, Esposito F, Thomson TM and Mauriel J: The tumor microenvironment in colorectal cancer therapy. Cancers (Basel). 11:11722019. View Article : Google Scholar | |
Kalluri R and Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI | |
Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF and Huelsken J: Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 481:85–89. 2011. View Article : Google Scholar : PubMed/NCBI | |
Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Céspedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, et al: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 22:571–584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brown RE, Short SP and Williams CS: Colorectal cancer and metabolism. Curr Colorectal Cancer Rep. 14:226–241. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gureev AP, Shaforostova EA and Popov VN: Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet. 10:4352019. View Article : Google Scholar : PubMed/NCBI | |
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vyas M, Patel N, Nagarajan A, Wajapeyee N, Jain D and Zhan X: Hypoxia induced HIF-1α expression promotes angiogenesis, tumor budding cell survival and cell proliferation arrest in high-grade tumor budding colorectal carcinomas. Int J Clin Exp Patho. 9:13047–13055. 2016. | |
Ancey PB, Contat C and Meylan E: Glucose transporters in cancer-from tumor cells to the tumor microenvironment. FEBS J. 285:2926–2943. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ritterson Lew C, Guin S and Theodorescu D: Targeting glycogen metabolism in bladder cancer. Nat Rev Urol. 12:383–391. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuo CC, Ling HH, Chiang MC, Chung CH, Lee WY, Chu CY, Wu YC, Chen CH, Lai YW, Tsai IL, et al: Metastatic colorectal cancer rewrites metabolic program through a Glut3-YAP-dependent signaling circuit. Theranostics. 9:2526–2540. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ: Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med. 10:767–777. 2008. View Article : Google Scholar : PubMed/NCBI | |
Weber GF: Metabolism in cancer metastasis. Int Jour Cancer. 138:2061–2066. 2016. View Article : Google Scholar | |
Corté H, Manceau G, Blons H and Laurent-Puig P: MicroRNA and colorectal cancer. Dig liver dis. 44:195–200. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bu P, Chen KY, Xiang K, Johnson C, Crown SB, Rakhilin N, Ai Y, Wang L, Xi R, Astapova I, et al: Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab. 27:1249–1262.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Wei D, Gao W, Xu Y, Hu Z, Ma Z, Gao C, Zhu X and Li Q: TPO-induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110+ tumor-initiating cells. Cell Stem Cells. 17:47–59. 2015. View Article : Google Scholar | |
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M and Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cellura D, Pickard K, Quaratino S, Parker H, Strefford JC, Thomas GJ, Mitter R, Mirnezami AH and Peake NJ: miR-19-mediated inhibition of transglutaminase-2 leads to enhanced invasion and metastasis in colorectal cancer. Mol Cancer Res. 13:1095–1105. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lam CS, Ng L, Chow AK, Wan TM, Yau S, Cheng NS, Wong SK, Man JH, Lo OS, Foo DC, et al: Identification of microRNA 885–5p as a novel regulator of tumor metastasis by targeting CPEB2 in colorectal cancer. Oncotarget. 8:26858–26870. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shibuya H, Iinuma H, Shimada R, Horiuchi A and Watanabe T: Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology. 79:313–320. 2010. View Article : Google Scholar : PubMed/NCBI | |
Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S and Allgayer H: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 27:2128–2136. 2008. View Article : Google Scholar : PubMed/NCBI | |
Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, Saltz L, Paty PB and Tavazoie SF: Extracellular metabolic energetics can promote cancer progression. Cell. 160:393–406. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chi Y and Zhou D: MicroRNAs in colorectal carcinoma-from pathogenesis to therapy. J Exp Clin Cancer Res. 35:432016. View Article : Google Scholar : PubMed/NCBI | |
Heublein S, Albertsmeier M, Pfeifer D, Loehrs L, Bazhin AV, Kirchner T, Werner J, Neumann J and Angele MK: Association of differential miRNA expression with hepatic vs. peritoneal metastatic spread in colorectal cancer. BMC Cancer. 18:2012018. View Article : Google Scholar : PubMed/NCBI | |
Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T and Hermeking H: Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and β-catenin predicts distant metastasis of colon cancer. Clin Cancer Res. 19:710–720. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma YS, Lv ZW, Yu F, Chang ZY, Cong XL, Zhong XM, Lu GX, Zhu J and Fu D: MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. J Exp Clin Cancer Res. 37:2522018. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Jackstadt R, Siemens H, Li H, Kirchner T and Hermeking H: p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res. 74:532–542. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan TT, Ren LL, Shen CQ, Wang ZH, Yu YN, Liang Q, Tang JY, Chen YX, Sun DF, Zgodzinski W, et al: miR-508 defines the stem-like/mesenchymal subtype in colorectal cancer. Cancer Res. 78:1751–1765. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, Hemmi H, Koi M, Boland CR and Goel A: MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 62:1315–1326. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Zhang Z, Liu Z, Qiu B, Liu K and Dong G: MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol. 31:9822014. View Article : Google Scholar : PubMed/NCBI | |
Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M and Wang J: MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene. 33:5332–5340. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hahn S, Jackstadt R, Siemens H, Hünten S and Hermeking H: SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 32:3079–3095. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miranda E, Destro A, Malesci A, Balladore E, Bianchi P, Baryshnikova E, Franchi G, Morenghi E, Laghi L, Gennari L and Roncalli M: Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer. 95:1101–1107. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Chen Y, Ren WU, Hu S, Tan Z, Wang Y, Chen Y, Zhang J, Wu J, Li T, et al: Transcriptome alterations in liver metastases of colorectal cancer after acquired resistance to cetuximab. Cancer Genom Proteom. 16:207–219. 2019. View Article : Google Scholar | |
Markowitz SD and Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 361:2449–2460. 2009. View Article : Google Scholar : PubMed/NCBI | |
Garinis GA, Menounos PG, Spanakis NE, Papadopoulos K, Karavitis G, Parassi I, Christeli E, Patrinos GP, Manolis EN and Peros G: Hypermethylation-associated transcriptional silencing of E-cadherin in primary sporadic colorectal carcinomas. J Pathol. 198:442–449. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ryall JG, Cliff T, Dalton S and Sartorelli V: Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell. 17:651–662. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim JA and Yeom YI: Metabolic signaling to epigenetic alterations in cancer. Biomol Ther (Seoul). 26:69–80. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS and Garcia BA: In vivo residue-specific histone methylation dynamics. J Biol Chem. 285:3341–3350. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tse JWT, Jenkins LJ, Chionh F and Mariadason JM: Aberrant DNA methylation in colorectal cancer: What should we target? Trends Cancer. 3:698–712. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zentner GE and Henikoff S: Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 20:259–266. 2013. View Article : Google Scholar : PubMed/NCBI |