Research progress on tumour‑associated macrophages in gastric cancer (Review)
- Authors:
- Zidi Zhou
- Zhilong Yang
- Jingzhi Wang
- Qiang Wang
- Heng Zhang
- Xiaoli Ju
-
Affiliations: School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China, Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu 211200, P.R. China, Department of Oncology Radiotherapy, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China, Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China - Published online on: February 19, 2021 https://doi.org/10.3892/or.2021.7986
- Article Number: 35
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rawla P and Barsouk A: Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz Gastroenterol. 14:26–38. 2019.PubMed/NCBI | |
Balakrishnan M, George R, Sharma A and Graham DY: Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep. 19:362017. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ, Estève J, et al: Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 391:1023–1075. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kono K, Nakajima S and Mimura K: Current status of immune checkpoint inhibitors for gastric cancer. Gastric Cancer. 23:565–578. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sasaki A, Nakamura Y, Mishima S, Kawazoe A, Kuboki Y, Bando H, Kojima T, Doi T, Ohtsu A, Yoshino T, et al: Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer. 22:793–802. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aoki M, Shoji H, Nagashima K, Imazeki H, Miyamoto T, Hirano H, Honma Y, Iwasa S, Okita N, Takashima A, et al: Hyperprogressive disease during nivolumab or irinotecan treatment in patients with advanced gastric cancer. ESMO Open. 4:e0004882019. View Article : Google Scholar : PubMed/NCBI | |
Ogata T, Satake H, Ogata M, Hatachi Y and Yasui H: Hyperprogressive disease in the irradiation field after a single dose of nivolumab for gastric cancer: A case report. Case Rep Oncol. 11:143–150. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, et al: PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci USA. 116:9999–10008. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takeoka T, Okada K, Matsuno H, Konishi K, Ota H, Yokoyama S, Fukunaga M and Kobayashi K: Hyperprogressive disease during treatment with nivolumab for recurrence of gastric cancer. Gan To Kagaku Ryoho. 47:165–167. 2020.(In Japanese). PubMed/NCBI | |
Togasaki K, Sukawa Y, Kanai T and Takaishi H: Clinical efficacy of immune checkpoint inhibitors in the treatment of unresectable advanced or recurrent gastric cancer: An evidence-based review of therapies. Onco Targets Ther. 11:8239–8250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Ruiz EY, Van Cutsem E, Lee KW, Wyrwicz L, Schenker M, Alsina M, Ryu MH, Chung HC, Evesque L, et al: Phase III, randomised trial of avelumab versus physician's choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN Gastric 300. Ann Oncol. 29:2052–2060. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandalà M, Ryu MH, Fornaro L, Olesiński T, Caglevic C, Chung HC, et al: Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet. 392:123–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song X, Qi W, Guo J, Sun L, Ding A, Zhao G, Li H, Qiu W and Lv J: Immune checkpoint inhibitor combination therapy for gastric cancer: Research progress. Oncol Lett. 20:462020.PubMed/NCBI | |
Wang BC, Zhang ZJ, Fu C and Wang C: Efficacy and safety of anti-PD-1/PD-L1 agents vs chemotherapy in patients with gastric or gastroesophageal junction cancer: A systematic review and meta-analysis. Medicine (Baltimore). 98:e180542019. View Article : Google Scholar : PubMed/NCBI | |
Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, Sun W, Jalal SI, Shah MA, Metges JP, et al: Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 4:e1800132018. View Article : Google Scholar : PubMed/NCBI | |
Chung HC, Arkenau HT, Lee J, Rha SY, Oh DY, Wyrwicz L, Kang YK, Lee KW, Infante JR, Lee SS, et al: Avelumab (anti-PD-L1) as first-line switch-maintenance or second-line therapy in patients with advanced gastric or gastroesophageal junction cancer: phase 1b results from the JAVELIN Solid Tumor trial. J Immunother Cancer. 7:302019. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zhang F, Zhou N, Gu YM, Zhang YT, He YD, Wang L, Yang LX, Zhao Y and Li YM: Efficacy and safety of immune checkpoint inhibitors in advanced gastric or gastroesophageal junction cancer: A systematic review and meta-analysis. Oncoimmunology. 8:e15815472019. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Mo H, Zhang W, Chen X, Qu D, Wang X, Wu D, Wang X, Lan B, Yang B, et al: Promising efficacy of SHR-1210, a novel anti-programmed cell death 1 antibody, in patients with advanced gastric and gastroesophageal junction cancer in China. Cancer. 125:742–749. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doi T, Iwasa S, Muro K, Satoh T, Hironaka S, Esaki T, Nishina T, Hara H, Machida N, Komatsu Y, et al: Phase 1 trial of avelumab (anti-PD-L1) in Japanese patients with advanced solid tumors, including dose expansion in patients with gastric or gastroesophageal junction cancer: The JAVELIN Solid Tumor JPN trial. Gastric Cancer. 22:817–827. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Guo Y and Zou CP: Oncological outcomes of addition of anti-PD1/PD-L1 to chemotherapy in the therapy of patients with advanced gastric or gastro-oesophageal junction cancer: A meta-analysis. Medicine (Baltimore). 99:e183322020. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Van Cutsem E, Bang YJ, Fuchs C, Wyrwicz L, Lee KW, Kudaba I, Garrido M, Chung HC, Lee J, et al: Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 6:1571–1580. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang YK, Bang YJ, Kondo S, Chung HC, Muro K, Dussault I, Helwig C, Osada M and Doi T: Safety and tolerability of bintrafusp alfa, a bifunctional fusion protein targeting TGFbeta and PD-L1, in asian patients with pretreated recurrent or refractory gastric cancer. Clin Cancer Res. 26:3202–3210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Taieb J, Moehler M, Boku N, Ajani JA, Yañez Ruiz E, Ryu MH, Guenther S, Chand V and Bang YJ: Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives. Cancer Treat Rev. 66:104–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
De Mello RA, Lordick F, Muro K and Janjigian YY: Current and future aspects of immunotherapy for esophageal and gastric malignancies. Am Soc Clin Oncol Educ Book. 39:237–247. 2019. View Article : Google Scholar : PubMed/NCBI | |
Masuda K, Shoji H, Nagashima K, Yamamoto S, Ishikawa M, Imazeki H, Aoki M, Miyamoto T, Hirano H, Honma Y, et al: Correlation between immune-related adverse events and prognosis in patients with gastric cancer treated with nivolumab. BMC Cancer. 19:9742019. View Article : Google Scholar : PubMed/NCBI | |
Park R, Lopes L and Saeed A: Anti-PD-1/L1-associated immune-related adverse events as harbinger of favorable clinical outcome: Systematic review and meta-analysis. Clin Transl Oncol. 23:100–109. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fridman WH, Zitvogel L, Sautes-Fridman C and Kroemer G: The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 14:717–734. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lazar DC, Avram MF, Romosan I, Cornianu M, Taban S and Goldis A: Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J Gastroenterol. 24:3583–3616. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang WH, Wang WQ, Gao HL, Yu XJ and Liu L: The tumor immune microenvironment in gastroenteropancreatic neuroendocrine neoplasms. Biochim Biophys Acta Rev Cancer. 1872:1883112019. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Jin J, Yan L, Liu L, Li Q and Xu Y: The impaired anti-tumoral effect of immune surveillance cells in the immune microenvironment of gastric cancer. Clin Immunol. 219:1085512020. View Article : Google Scholar : PubMed/NCBI | |
Rojas A, Araya P, Gonzalez I and Morales E: Gastric tumor microenvironment. Adv Exp Med Biol. 1226:23–35. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kamath SD, Kalyan A and Benson AB III: Pembrolizumab for the treatment of gastric cancer. Expert Rev Anticancer Ther. 18:1177–1187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oya Y, Hayakawa Y and Koike K: Tumor microenvironment in gastric cancers. Cancer Sci. 111:2696–2707. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ocana A, Nieto-Jimenez C, Pandiella A and Templeton AJ: Neutrophils in cancer: Prognostic role and therapeutic strategies. Mol Cancer. 16:1372017. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, et al: Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 18:102019. View Article : Google Scholar : PubMed/NCBI | |
Aktas ON, Ozturk AB, Erman B, Erus S, Tanju S and Dilege S: Role of natural killer cells in lung cancer. J Cancer Res Clin Oncol. 144:997–1003. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jackaman C, Tomay F, Duong L, Abdol Razak NB, Pixley FJ, Metharom P and Nelson DJ: Aging and cancer: The role of macrophages and neutrophils. Ageing Res Rev. 36:105–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tevis KM, Cecchi RJ, Colson YL and Grinstaff MW: Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models. Acta Biomater. 50:271–279. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ruffell B and Coussens LM: Macrophages and therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yan Y, Yang Y, Wang L, Li M and Wang J, Liu X, Duan X and Wang J: High infiltration of tumor-associated macrophages influences poor prognosis in human gastric cancer patients, associates with the phenomenon of EMT. Medicine (Baltimore). 95:e26362016. View Article : Google Scholar : PubMed/NCBI | |
Wang XL, Jiang JT and Wu CP: Prognostic significance of tumor-associated macrophage infiltration in gastric cancer: A meta-analysis. Genet Mol Res. 152016.doi: 10.4238/gmr15049040. | |
Wang B, Xu D, Yu X, Ding T, Rao H, Zhan Y, Zheng L and Li L: Association of intra-tumoral infiltrating macrophages and regulatory T cells is an independent prognostic factor in gastric cancer after radical resection. Ann Surg Oncol. 18:2585–2593. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou K, Cheng T, Zhan J, Peng X, Zhang Y, Wen J, Chen X and Ying M: Targeting tumor-associated macrophages in the tumor microenvironment. Oncol Lett. 20:2342020. View Article : Google Scholar : PubMed/NCBI | |
Aras S and Zaidi MR: TAMeless traitors: Macrophages in cancer progression and metastasis. Br J Cancer. 117:1583–1591. 2017. View Article : Google Scholar : PubMed/NCBI | |
Petty AJ and Yang Y: Tumor-associated macrophages: Implications in cancer immunotherapy. Immunotherapy. 9:289–302. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Zhang H, Cheng Y, Jiang X, Zhu J and Jin T: Double roles of macrophages in human neuroimmune diseases and their animal models. Mediators Inflamm. 2016:84892512016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Jiao X, Meng Y, Chen H, Griffin N, Gao X and Shan F: Methionine enkephalin (MENK) inhibits human gastric cancer through regulating tumor associated macrophages (TAMs) and PI3K/AKT/mTOR signaling pathway inside cancer cells. Int Immunopharmacol. 65:312–322. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza-Segura M, Roselló S, Roda D, Huerta M, Cervantes A and Fleitas T: The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat Rev. 86:1020152020. View Article : Google Scholar : PubMed/NCBI | |
Kim KJ, Wen XY, Yang HK, Kim WH and Kang GH: Prognostic implication of M2 macrophages are determined by the proportional balance of tumor associated macrophages and tumor infiltrating lymphocytes in microsatellite-unstable gastric carcinoma. PLoS One. 10:e01441922015. View Article : Google Scholar : PubMed/NCBI | |
Park JY, Sung JY, Lee J, Park YK, Kim YW, Kim GY, Won KY and Lim SJ: Polarized CD163+ tumor-associated macrophages are associated with increased angiogenesis and CXCL12 expression in gastric cancer. Clin Res Hepatol Gastroenterol. 40:357–365. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu JY, Peng CW, Yang GF, Hu WQ, Yang XJ, Huang CQ, Xiong B and Li Y: Distribution pattern of tumor associated macrophages predicts the prognosis of gastric cancer. Oncotarget. 8:92757–92769. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tauchi Y, Tanaka H, Kumamoto K, Tokumoto M, Sakimura C, Sakurai K, Kimura K, Toyokawa T, Amano R, Kubo N, et al: Tumor-associated macrophages induce capillary morphogenesis of lymphatic endothelial cells derived from human gastric cancer. Cancer Sci. 107:1101–1109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ge S, Xia X, Ding C, Zhen B, Zhou Q, Feng J, Yuan J, Chen R, Li Y, Ge Z, et al: A proteomic landscape of diffuse-type gastric cancer. Nat Commun. 9:10122018. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi T, Fushida S, Yamamoto Y, Tsukada T, Kinoshita J, Oyama K, Miyashita T, Tajima H, Ninomiya I, Munesue S, et al: Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer. 19:1052–1065. 2016. View Article : Google Scholar : PubMed/NCBI | |
Plummer M, de Martel C, Vignat J, Ferlay J, Bray F and Franceschi S: Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob Health. 4:e609–616. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hardbower DM, Asim M, Murray-Stewart T, Casero RA Jr, Verriere T, Lewis ND, Chaturvedi R, Piazuelo MB and Wilson KT: Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection. Amino Acids. 48:2375–2388. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Kauttu T, Seppanen H, Vainionpää S, Ye Y, Wang S, Mustonen H and Puolakkainen P: Both macrophages and hypoxia play critical role in regulating invasion of gastric cancer in vitro. Acta Oncol. 52:852–860. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhihua Y, Yulin T, Yibo W, Wei D, Yin C, Jiahao X, Runqiu J and Xuezhong X: Hypoxia decreases macrophage glycolysis and M1 percentage by targeting microRNA-30c and mTOR in human gastric cancer. Cancer Sci. 110:2368–2377. 2019. View Article : Google Scholar : PubMed/NCBI | |
Osinsky S, Bubnovskaya L, Ganusevich I, Kovelskaya A, Gumenyuk L, Olijnichenko G and Merentsev S: Hypoxia, tumour-associated macrophages, microvessel density, VEGF and matrix metalloproteinases in human gastric cancer: Interaction and impact on survival. Clin Transl Oncol. 13:133–138. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Yan Y, Ye C, Wang B, Jiang K, Ye Y, Mustonen H, Puolakkainen P and Wang S: The effect of Vasohibin-1 expression and tumor-associated macrophages on the angiogenesis in vitro and in vivo. Tumour Biol. 37:7267–7276. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kawahara A, Hattori S, Akiba J, Nakashima K, Taira T, Watari K, Hosoi F, Uba M, Basaki Y, Koufuji K, et al: Infiltration of thymidine phosphorylase-positive macrophages is closely associated with tumor angiogenesis and survival in intestinal type gastric cancer. Oncol Rep. 24:405–415. 2010. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Mei D, Zhang J, Luo R, Lu H, Xu H and Huang B: Impact of skip lymph node metastasis on the prognosis of gastric cancer patients who underwent curative gastrectomy. J BUON. 24:693–700. 2019.PubMed/NCBI | |
Liu XJ, Li SL, Li JS, Lu H, Yin LL, Zheng WF and Wang WC: Long non-coding RNA ZEB1-AS1 is associated with poor prognosis in gastric cancer and promotes cancer cell metastasis. Eur Rev Med Pharmacol Sci. 22:2624–2630. 2018.PubMed/NCBI | |
Wei Y, Zhang F, Zhang T, Zhang Y, Chen H, Wang F and Li Y: LDLRAD2 overexpression predicts poor prognosis and promotes metastasis by activating Wnt/β-catenin/EMT signaling cascade in gastric cancer. Aging (Albany NY). 11:8951–8968. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiao T and Jie Z: MiR-21 Promotes the invasion and metastasis of gastric cancer cells by activating epithelial-mesenchymal transition. Eur Surg Res. 60:208–218. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Yuan T, Wang H, Yao S, Zhao Y, Liu Y, Jin S, Chu J, Xu Y, Zhou W, et al: MMP-2 together with MMP-9 overexpression correlated with lymph node metastasis and poor prognosis in early gastric carcinoma. Tumour Biol. 39:10104283177004112017. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Wang YF, Su HF, Fang N, Zou C, Li WF and Fei ZH: Decreased expression of the long noncoding RNA LINC00261 indicate poor prognosis in gastric cancer and suppress gastric cancer metastasis by affecting the epithelial-mesenchymal transition. J Hematol Oncol. 9:572016. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Song ZJ, Wang Y, Zhong WF, Kang P and Yang Y: Elevated long non-coding RNA LINC00958 was associated with metastasis and unfavorable prognosis in gastric cancer. Eur Rev Med Pharmacol Sci. 23:598–603. 2019.PubMed/NCBI | |
Xie QP, Xiang C, Wang G, Lei KF and Wang Y: MACC1 upregulation promotes gastric cancer tumor cell metastasis and predicts a poor prognosis. J Zhejiang Univ Sci B. 17:361–366. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han F, Zhang L, Qiu W and Yi X: TRAF6 promotes the invasion and metastasis and predicts a poor prognosis in gastric cancer. Pathol Res Pract. 212:31–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Turajlic S and Swanton C: Metastasis as an evolutionary process. Science. 352:169–175. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Yan Y, Yan Y, Guo Q, Zhang M, Zhang J and Goltzman D: Tumor-associated macrophages induce the expression of FOXQ1 to promote epithelial-mesenchymal transition and metastasis in gastric cancer cells. Oncol Rep. 38:2003–2010. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Zhang J, Li JH, Liu X, Wang JZ, Qu HY, Wang JS and Duan XY: High tumor-associated macrophages infiltration is associated with poor prognosis and may contribute to the phenomenon of epithelial-mesenchymal transition in gastric cancer. Onco Targets Ther. 9:3975–3983. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng P, Luo Q, Wang W, Li J, Wang T, Wang P, Chen L, Zhang P, Chen H, Liu Y, et al: Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E. Cell Death Dis. 9:4342018. View Article : Google Scholar : PubMed/NCBI | |
Ying X, Wu Q, Wu X, Zhu Q and Wang X, Jiang L, Chen X and Wang X: Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 7:43076–43087. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su CY, Fu XL, Duan W, Yu PW and Zhao YL: High density of CD68+ tumor-associated macrophages predicts a poor prognosis in gastric cancer mediated by IL-6 expression. Oncol Lett. 15:6217–6224. 2018.PubMed/NCBI | |
Wang Z, Yin N, Zhang Z, Zhang Y, Zhang G and Chen W: Upregulation of T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) in monocytes/macrophages associates with gastric cancer progression. Immunol Invest. 46:134–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ding H, Zhao L, Dai S, Li L, Wang F and Shan B: CCL5 secreted by tumor associated macrophages may be a new target in treatment of gastric cancer. Biomed Pharmacother. 77:142–149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin C, He H, Liu H, Li R, Chen Y, Qi Y, Jiang Q, Chen L, Zhang P, Zhang H, et al: Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut. 68:1764–1773. 2019. View Article : Google Scholar : PubMed/NCBI | |
Go Y, Tanaka H, Tokumoto M, Sakurai K, Toyokawa T, Kubo N, Muguruma K, Maeda K, Ohira M and Hirakawa K: Tumor-associated macrophages extend along lymphatic flow in the Pre-metastatic lymph nodes of human gastric cancer. Ann Surg Oncol. 23 (Suppl 2):S230–S235. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rojas A, Delgado-Lopez F, Perez-Castro R, Gonzalez I, Romero J, Rojas I, Araya P, Añazco C, Morales E and Llanos J: HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol. 37:3321–3329. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G, Ma Y and Shen L: Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res. 36:532017. View Article : Google Scholar : PubMed/NCBI | |
Boussiotis VA: Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 375:1767–1778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Sun Q and Zhang X: PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget. 8:2171–2186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Cao D, Qu L, Cao X, Jia Z, Zhao T, Wang Q and Jiang J: PD-1 and PD-L1 co-expression predicts favorable prognosis in gastric cancer. Oncotarget. 8:64066–64082. 2017. View Article : Google Scholar : PubMed/NCBI | |
D'Ignazio A, Kabata P, Ambrosio MR, Polom K, Marano L, Spagnoli L, Ongaro A, Pieretti L, Marrelli D, Biviano I and Roviello F: Preoperative oral immunonutrition in gastrointestinal surgical patients: How the tumour microenvironment can be modified. Clin Nutr ESPEN. 38:153–159. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kono Y, Saito H, Miyauchi W, Shimizu S, Murakami Y, Shishido Y, Miyatani K, Matsunaga T, Fukumoto Y, Nakayama Y, et al: Increased PD-1-positive macrophages in the tissue of gastric cancer are closely associated with poor prognosis in gastric cancer patients. BMC Cancer. 20:1752020. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Li B, Wei Y, Zhao Y, Wang L, Zhang P, Yang J, He W, Chen H, Jiao Z and Li Y: Tumor-derived exosomes induce PD1+ macrophage population in human gastric cancer that promotes disease progression. Oncogenesis. 7:412018. View Article : Google Scholar : PubMed/NCBI | |
Huang YK, Wang M, Sun Y, Di Costanzo N, Mitchell C, Achuthan A, Hamilton JA, Busuttil RA and Boussioutas A: Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat Commun. 10:39282019. View Article : Google Scholar : PubMed/NCBI | |
Harada K, Dong X, Estrella JS, Correa AM, Xu Y, Hofstetter WL, Sudo K, Onodera H, Suzuki K, Suzuki A, et al: Tumor-associated macrophage infiltration is highly associated with PD-L1 expression in gastric adenocarcinoma. Gastric Cancer. 21:31–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nakayama Y, Mimura K, Kua LF, Okayama H, Min AKT, Saito K, Hanayama H, Watanabe Y, Saito M, Momma T, et al: Immune suppression caused by PD-L2 expression on tumor cells in gastric cancer. Gastric Cancer. 23:961–973. 2020. View Article : Google Scholar : PubMed/NCBI | |
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al: TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44:e712016. View Article : Google Scholar : PubMed/NCBI | |
Al-Khami AA, Zheng L, Del Valle L, Hossain F, Wyczechowska D, Zabaleta J, Sanchez MD, Dean MJ, Rodriguez PC and Ochoa AC: Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology. 6:e13448042017. View Article : Google Scholar : PubMed/NCBI | |
Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, et al: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 3:1236–1247. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gardner JK, Mamotte CD, Patel P, Yeoh TL, Jackaman C and Nelson DJ: Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function. PLoS One. 10:e01235632015. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Zheng N, Jiang L, Wang T, Zhang P, Liu Y, Zheng P, Wang W, Xie G, Chen L, et al: Lipid accumulation in macrophages confers protumorigenic polarization and immunity in gastric cancer. Cancer Sci. 111:4000–4011. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Cao Y, Li R, Gu Y, Chen Y, Qi Y, Lv K, Wang J, Yu K, Lin C, et al: Poor clinical outcomes of intratumoral dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin-positive macrophages associated with immune evasion in gastric cancer. Eur J Cancer. 128:27–37. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peng LS, Zhang JY, Teng YS, Zhao YL, Wang TT, Mao FY, Lv YP, Cheng P, Li WH, Chen N, et al: Tumor-associated monocytes/macrophages impair NK-cell function via TGFβ1 in human gastric cancer. Cancer Immunol Res. 5:248–256. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R and Polkowski WP: Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag Res. 10:239–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Salati M, Orsi G, Smyth E, Aprile G, Beretta G, De Vita F, Di Bartolomeo M, Fanotto V, Lonardi S, Morano F, et al: Gastric cancer: Translating novels concepts into clinical practice. Cancer Treat Rev. 79:1018892019. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Plotnikoff N, Griffin N, Song T and Shan F: Methionine enkephalin, its role in immunoregulation and cancer therapy. Int Immunopharmacol. 37:59–64. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Jiao X, Wang X, Geng J, Wang R, Liu N, Gao X, Griffin N and Shan F: Novel effect of methionine enkephalin against influenza A virus infection through inhibiting TLR7-MyD88-TRAF6-NF-κB p65 signaling pathway. Int Immunopharmacol. 55:38–48. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Gao X, Chen W, Plotnikoff NP, Griffin N, Zhang G and Shan F: Methionine enkephalin (MENK) mounts antitumor effect via regulating dendritic cells (DCs). Int Immunopharmacol. 44:61–71. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang DM, Wang GC, Yang J, Plotnikoff NP, Griffin N, Han YM, Qi RQ, Gao XH and Shan FP: Inhibition of the growth of human melanoma cells by methionine enkephalin. Mol Med Rep. 14:5521–5527. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yue Z, Si T, Pan Z, Cao W, Yan Z, Jiang Z and Ouyang H: Sophoridine suppresses cell growth in human medulloblastoma through FoxM1, NF-κB and AP-1. Oncol Lett. 14:7941–7946. 2017.PubMed/NCBI | |
Zhuang H, Dai X, Zhang X, Mao Z and Huang H: Sophoridine suppresses macrophage-mediated immunosuppression through TLR4/IRF3 pathway and subsequently upregulates CD8(+) T cytotoxic function against gastric cancer. Biomed Pharmacother. 121:1096362020. View Article : Google Scholar : PubMed/NCBI | |
Speiser DE, Ho PC and Verdeil G: Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 16:599–611. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W and Wang H: A Natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine. 22:58–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Roca CA, Italiano A, Le Tourneau C, Cassier PA, Toulmonde M, D'Angelo SP, Campone M, Weber KL, Loirat D, Cannarile MA, et al: Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol. 30:1381–1392. 2019. View Article : Google Scholar : PubMed/NCBI | |
Piechutta M and Berghoff AS: New emerging targets in cancer immunotherapy: The role of cluster of differentiation 40 (CD40/TNFR5). ESMO Open. 4:e0005102019. View Article : Google Scholar : PubMed/NCBI | |
Bajor DL, Mick R, Riese MJ, Huang AC, Sullivan B, Richman LP, Torigian DA, George SM, Stelekati E, Chen F, et al: Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncoimmunology. 7:e14689562018. View Article : Google Scholar : PubMed/NCBI | |
Machiels JP, Gomez-Roca C, Michot JM, Zamarin D, Mitchell T, Catala G, Eberst L, Jacob W, Jegg AM, Cannarile MA, et al: Phase Ib study of anti-CSF-1R antibody emactuzumab in combination with CD40 agonist selicrelumab in advanced solid tumor patients. J Immunother Cancer. 8:e0011532020. View Article : Google Scholar : PubMed/NCBI | |
Alqahtani FY, Aleanizy FS, El Tahir E, Alkahtani HM and AlQuadeib BT: Paclitaxel. Profiles Drug Subst Excip Relat Methodol. 44:205–238. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Takashima A, Fujitani K, Koeda K, Hara H, Nakayama N, Hironaka S, Nishikawa K, Makari Y, Amagai K, et al: Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): An open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol Hepatol. 2:277–287. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mehta R, Kommalapati A and Kim RD: The impact of ramucirumab treatment on survival and quality of life in patients with gastric cancer. Cancer Manag Res. 12:51–57. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bando H, Shimodaira H, Fujitani K, Takashima A, Yamaguchi K, Nakayama N, Takahashi T, Oki E, Azuma M, Nishina T, et al: A phase II study of nab-paclitaxel in combination with ramucirumab in patients with previously treated advanced gastric cancer. Eur J Cancer. 91:86–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y, Matsuki M, et al: Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 14:e02125132019. View Article : Google Scholar : PubMed/NCBI | |
Kawazoe A, Fukuoka S, Nakamura Y, Kuboki Y, Wakabayashi M, Nomura S, Mikamoto Y, Shima H, Fujishiro N, Higuchi T, et al: Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): An open-label, single-arm, phase 2 trial. Lancet Oncol. 21:1057–1065. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Xu D, Huang C, Guo Y, Wang S, Zhu C, Xu J, Zhang Z, Shen Y, Zhao W and Zhao G: Regulatory T cells and M2 macrophages present diverse prognostic value in gastric cancer patients with different clinicopathologic characteristics and chemotherapy strategies. J Transl Med. 17:1922019. View Article : Google Scholar : PubMed/NCBI |