1
|
Cohen N, Fedewa S and Chen AY:
Epidemiology and demographics of the head and neck cancer
population. Oral Maxillofac Surg Clin North Am. 30:381–395. 2018.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Hussein AA, Forouzanfar T, Bloemena E, de
Visscher J, Brakenhoff RH, Leemans CR and Helder MN: A review of
the most promising biomarkers for early diagnosis and prognosis
prediction of tongue squamous cell carcinoma. Br J Cancer.
119:724–736. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Di Agostino S, Riccioli A, De Cesaris P,
Fontemaggi G, Blandino G, Filippini A and Fazi F: Circular RNAs in
embryogenesis and cell differentiation with a focus on cancer
development. Front Cell Dev Biol. 8:3892020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bach DH, Lee SK and Sood AK: Circular RNAs
in cancer. Mol Ther Nucleic Acids. 16:118–129. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rajappa A, Banerjee S, Sharma V and
Khandelia P: Circular RNAs: Emerging role in cancer diagnostics and
therapeutics. Front Mol Biosci. 7:5779382020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lei M, Zheng G, Ning Q, Zheng J and Dong
D: Translation and functional roles of circular RNAs in human
cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wei T, Ye P, Yu GY and Zhang ZY: Circular
RNA expression profiling identifies specific circular RNAs in
tongue squamous cell carcinoma. Mol Med Rep. 21:1727–1738.
2020.PubMed/NCBI
|
8
|
Yao Y, Bi L and Zhang C: Circular
RNA_0001742 has potential to predict advanced tumor stage and poor
survival profiles in tongue squamous cell carcinoma management. J
Clin Lab Anal. 34:e233302020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hu YT, Li XX and Zeng LW: Circ_0001742
promotes tongue squamous cell carcinoma progression via
miR-431-5p/ATF3 axis. Eur Rev Med Pharmacol Sci. 23:10300–10312.
2019.PubMed/NCBI
|
10
|
Shao B and He L: Hsa_circ_0001742 promotes
tongue squamous cell carcinoma progression via modulating miR-634
expression. Biochem Biophys Res Commun. 513:135–140. 2019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Li S, Niu X, Li H, Liang Y, Sun Z and Yan
Y: Circ_0000003 promotes the proliferation and metastasis of
non-small cell lung cancer cells via miR-338-3p/insulin receptor
substrate 2. Cell Cycle. 18:3525–3539. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Faubert B, Solmonson A and DeBerardinis
RJ: Metabolic reprogramming and cancer progression. Science.
368:eaaw54732020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kery M and Papandreou I: Emerging
strategies to target cancer metabolism and improve radiation
therapy outcomes. Br J Radiol. 93:202000672020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T
and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol
Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhen N, Gu S, Ma J, Zhu J, Yin M, Xu M,
Wang J, Huang N, Cui Z, Bian Z, et al: CircHMGCS1 promotes
hepatoblastoma cell proliferation by regulating the IGF signaling
pathway and glutaminolysis. Theranostics. 9:900–919. 2019.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu R, Zhang X, Li X and Wan X:
Circ_0016418 promotes melanoma development and glutamine catabolism
by regulating the miR-605-5p/GLS axis. Int J Clin Exp Pathol.
13:1791–1801. 2020.PubMed/NCBI
|
17
|
Zhu H, Hu Y, Wang C, Zhang X and He D:
CircGCN1L1 promotes synoviocyte proliferation and chondrocyte
apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis.
Cell Death Dis. 11:2842020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen S, Sun YY, Zhang ZX, Li YH, Xu ZM and
Fu WN: Transcriptional suppression of microRNA-27a contributes to
laryngeal cancer differentiation via GSK-3β-involved Wnt/β-catenin
pathway. Oncotarget. 8:14708–14718. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zeng B, Ye H, Chen J, Cheng D, Cai C, Chen
G, Chen X, Xin H, Tang C and Zeng J: LncRNA TUG1 sponges miR-145 to
promote cancer progression and regulate glutamine metabolism via
Sirt3/GDH axis. Oncotarget. 8:113650–113661. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang X, Xu L and Yang T: miR-31 Modulates
liver cancer HepG2 cell apoptosis and Invasion via ROCK1/F-Actin
Pathways. Onco Targets Ther. 13:877–888. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu J, Zhao W, Wang Z, Xiang X, Zhang S and
Liu L: Long non-coding RNA SNHG20 promotes the tumorigenesis of
oral squamous cell carcinoma via targeting miR-197/LIN28 axis. J
Cell Mol Med. 23:680–688. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li Q, Wang W, Zhang M, Sun W, Shi W and Li
F: Circular RNA circ-0016068 promotes the growth, migration, and
invasion of prostate cancer cells by regulating the
miR-330-3p/BMI-1 axis as a competing endogenous RNA. Front Cell Dev
Biol. 8:8272020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Y, Zhou YM, Zhang ZJ and Li X:
miR-210 is a serological biomarker for predicting recurrence and
prognosis of colon carcinoma patients with liver metastases after
radiofrequency ablation treatment. Cancer Manag Res. 12:9077–9085.
2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang J, Wang L, Mao S, Liu M, Zhang W,
Zhang Z, Guo Y, Huang B, Yan Y, Huang Y and Yao X: miR-1-3p
contributes to cell proliferation and invasion by targeting
glutaminase in bladder cancer cells. Cell Physiol Biochem.
51:513–527. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
He D, Yang X, Kuang W, Huang G, Liu X and
Zhang Y: The Novel Circular RNA Circ-PGAP3 promotes the
proliferation and invasion of triple negative breast cancer by
regulating the miR-330-3p/Myc axis. Onco Targets Ther.
13:10149–10159. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cheng Y, Zhu H and Gao W: MicroRNA-330-3p
represses the proliferation and invasion of laryngeal squamous cell
carcinoma through downregulation of Tra2β-mediated Akt signaling.
Mol Cell Probes. 52:1015742020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang H, Liu G, Li T, Wang N, Wu J and Zhi
H: MiR-330-3p functions as a tumor suppressor that regulates glioma
cell proliferation and migration by targeting CELF1. Arch Med Sci.
16:1166–1175. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ren S, Lin P, Wang J, Yu H, Lv T, Sun L
and Du G: Circular RNAs: Promising molecular biomarkers of human
aging-related diseases via functioning as an miRNA sponge. Mol Ther
Methods Clin Dev. 18:215–229. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Narayanan R and Schratt G: miRNA
regulation of social and anxiety-related behaviour. Cell Mol Life
Sci. 77:4347–4364. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Masisi BK, El Ansari R, Alfarsi L, Rakha
EA, Green AR and Craze ML: The role of glutaminase in cancer.
Histopathology. 76:498–508. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang J, Mao S, Guo Y, Wu Y, Yao X and
Huang Y: Inhibition of GLS suppresses proliferation and promotes
apoptosis in prostate cancer. Biosci Rep. 39:BSR201818262019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Yoo HC, Yu YC, Sung Y and Han JM:
Glutamine reliance in cell metabolism. Exp Mol Med. 52:1496–1516.
2020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Park JH, Pyun WY and Park HW: Cancer
Metabolism: Phenotype, signaling and therapeutic targets. Cells.
9:23082020. View Article : Google Scholar
|
35
|
Matés JM, Campos-Sandoval JA,
Santos-Jiménez JL and Márquez J: Dysregulation of glutaminase and
glutamine synthetase in cancer. Cancer Lett. 467:29–39. 2019.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Shah R and Chen S: Metabolic Signaling
Cascades Prompted by Glutaminolysis in Cancer. Cancers (Basel).
12:26242020. View Article : Google Scholar
|
37
|
Ogawa T, Washio J, Takahashi T, Echigo S
and Takahashi N: Glucose and glutamine metabolism in oral squamous
cell carcinoma: insight from a quantitative metabolomic approach.
Oral Surg Oral Med Oral Pathol Oral Radiol. 118:218–225. 2014.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Z, Liu R, Shuai Y, Huang Y, Jin R,
Wang X and Luo J: ASCT2 (SLC1A5)-dependent glutamine uptake is
involved in the progression of head and neck squamous cell
carcinoma. Br J Cancer. 122:82–93. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Matés JM, Di Paola FJ, Campos-Sandoval JA,
Mazurek S and Márquez J: Therapeutic targeting of glutaminolysis as
an essential strategy to combat cancer. Semin Cell Dev Biol.
98:34–43. 2020. View Article : Google Scholar : PubMed/NCBI
|