Long non‑coding RNAs: Key regulators involved in metabolic reprogramming in cancer (Review)
- Authors:
- Chunxia Liu
- Hao Li
- Fenglan Chu
- Xi Zhou
- Rui Xie
- Qiongqiong Wei
- Shiming Yang
- Tao Li
- Sicheng Liang
- Muhan Lü
-
Affiliations: Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Gastroenterology, Army Medical University, Chongqing 400000, P.R. China, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China - Published online on: March 8, 2021 https://doi.org/10.3892/or.2021.8005
- Article Number: 54
This article is mentioned in:
Abstract
Rinn JL and Chang HY: Genome regulation by long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H and Yan GR: A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell. 68:171–184.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jackson R, Kroehling L, Khitun A, Bailis W, Jarret A, York AG, Khan OM, Brewer JR, Skadow MH, Duizer C, et al: The translation of non-canonical open reading frames controls mucosal immunity. Nature. 564:434–438. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stein LD: Human genome: End of the beginning. Nature. 431:915–916. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Struhl K: Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol. 14:103–105. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ebisuya M, Yamamoto T, Nakajima M and Nishida E: Ripples from neighbouring transcription. Nat Cell Biol. 10:1106–1113. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Jin L, Zhang J, Yin Y, Quan C, Hu Y, Feng Y, Liu H, Fei B, Mao Y, et al: LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci Rep. 6:238922016. View Article : Google Scholar : PubMed/NCBI | |
Pauli A, Rinn JL and Schier AF: Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 12:136–149. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang SZ, Xu F, Zhou T, Zhao X, McDonald JM and Chen Y: The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosis-inducing ligand. J Biol Chem. 292:10390–10397. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar : PubMed/NCBI | |
Batista PJ and Chang HY: Long noncoding RNAs: Cellular address codes in development and disease. Cell. 152:1298–1307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guttman M and Rinn JL: Modular regulatory principles of large non-coding RNAs. Nature. 482:339–346. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS and Perera RJ: The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 71:3852–3862. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xia Y and Lu Z: Metabolic features of cancer cells. Cancer Commun (Lond). 38:652018. View Article : Google Scholar : PubMed/NCBI | |
Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Zhang H, Mei Y and Wu M: Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell. 53:88–100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhao Q, Qi J, Wang W, Zhang D, Li Z and Qin C: lncRNA Ftx promotes aerobic glycolysis and tumor progression through the PPARγ pathway in hepatocellular carcinoma. Int J Oncol. 53:551–566. 2018.PubMed/NCBI | |
Yang X, Ye H, He M, Zhou X, Sun N, Guo W, Lin X, Huang H, Lin Y, Yao R and Wang H: LncRNA PDIA3P interacts with c-Myc to regulate cell proliferation via induction of pentose phosphate pathway in multiple myeloma. Biochem Biophys Res Commun. 498:207–213. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Huang K, Wen F, Cui G, Guo H, He Z and Zhao S: LINC00184 silencing inhibits glycolysis and restores mitochondrial oxidative phosphorylation in esophageal cancer through demethylation of PTEN. EBioMedicine. 44:298–310. 2019. View Article : Google Scholar : PubMed/NCBI | |
Redis RS, Vela LE, Lu W, Ferreira de Oliveira J, Ivan C, Rodriguez-Aguayo C, Adamoski D, Pasculli B, Taguchi A, Chen Y, et al: Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol Cell. 61:520–534. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Fan Q, Yang L, Zhang X, Ma Y, Zong Z, Hua X, Su D, Sun H, Li H and Liu Z: Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. Oncol Rep. 38:1902–1908. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wu J, Wang Z, Yang Z, Li Z, Deng H, Li L, Peng X and Feng M: Glutamine addiction activates polyglutamine-based nanocarriers delivering therapeutic siRNAs to orthotopic lung tumor mediated by glutamine transporter SLC1A5. Biomaterials. 183:77–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xing Z, Zhang Y, Liang K, Yan L, Xiang Y, Li C, Hu Q, Jin F, Putluri V, Putluri N, et al: Expression of long noncoding RNA YIYA promotes glycolysis in breast cancer. Cancer Res. 78:4524–4532. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Xu Y, Wang X, Jiang C, Han S, Dong K, Shen M and Xu D: LincRNA-p21 suppresses development of human prostate cancer through inhibition of PKM2. Cell Prolif. 50:e123952017. View Article : Google Scholar | |
Zhang P, Cao L, Fan P, Mei Y and Wu M: LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation. EMBO Rep. 17:1204–1220. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S, Zhang Y, et al: The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol. 18:213–224. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu M, An J, Zheng Q, Xin X, Lin Z, Li X, Li H and Lu D: Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR. Oncotarget. 7:66525–66539. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dröge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shiraishi T, Verdone JE, Huang J, Kahlert UD, Hernandez JR, Torga G, Zarif JC, Epstein T, Gatenby R, McCartney A, et al: Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget. 6:130–143. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peppicelli S, Bianchini F and Calorini L: Extracellular acidity, a ‘reappreciated’ trait of tumor environment driving malignancy: Perspectives in diagnosis and therapy. Cancer Metastasis Rev. 33:823–832. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gottschalk S, Anderson N, Hainz C, Eckhardt SG and Serkova NJ: Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 10:6661–6668. 2004. View Article : Google Scholar : PubMed/NCBI | |
Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM and Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64:3892–3899. 2004. View Article : Google Scholar : PubMed/NCBI | |
Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, et al: Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 282:E974–E976. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mueckler M and Thorens B: The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 34:121–138. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang X, Wang Z, Hu Q, Wu J, Li Y, Ren X, Wu T, Tao X, Chen X, et al: LncRNA-p23154 promotes the invasion-metastasis potential of oral squamous cell carcinoma by regulating Glut1-mediated glycolysis. Cancer Lett. 434:172–183. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ellis BC, Graham LD and Molloy PL: CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta. 1843:372–386. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang Y, Zhu X, Xu Y, Tang Q, Huang Z, Zhao Z, Lu J, Song G, Xu H, Deng C and Wang J: Energy stress-induced lncRNA HAND2-AS1 represses HIF1α-mediated energy metabolism and inhibits osteosarcoma progression. Am J Cancer Res. 8:526–537. 2018.PubMed/NCBI | |
Chang L, Xu W, Zhang Y and Gong F: Long non-coding RNA-NEF targets glucose transportation to inhibit the proliferation of non-small-cell lung cancer cells. Oncol Lett. 17:2795–2801. 2019.PubMed/NCBI | |
Zhao Y, Liu Y, Lin L, Huang Q, He W, Zhang S, Dong S, Wen Z, Rao J, Liao W and Shi M: The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol Cancer. 17:692018. View Article : Google Scholar : PubMed/NCBI | |
Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C and Guha A: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 208:313–326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song J, Wu X, Liu F, Li M, Sun Y, Wang Y, Wang C, Zhu K, Jia X, Wang B and Ma X: Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun. 490:217–224. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin YH, Wu MH, Huang YH, Yeh CT, Cheng ML, Chi HC, Tsai CY, Chung IH, Chen CY and Lin KH: Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology. 67:188–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Han H, Liu GP, Ma YX, Pan RL, Sang LJ, Li RH, Yang LJ, Marks JR, Wang W and Lin A: LncRNA wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism. EMBO J. 36:3325–3335. 2017. View Article : Google Scholar : PubMed/NCBI | |
Noguchi T, Yamada K, Inoue H, Matsuda T and Tanaka T: The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem. 262:14366–14371. 1987. View Article : Google Scholar : PubMed/NCBI | |
Noguchi T, Inoue H and Tanaka T: The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 261:13807–13812. 1986. View Article : Google Scholar : PubMed/NCBI | |
Mazurek S, Boschek CB, Hugo F and Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 15:300–308. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W, et al: LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 24:4808–4819. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Zhang L, Cao Y, Chen S, Cao J, Wu D, Chen J, Xiong H, Pan Z, Qiu F, et al: Overexpression of lncRNA IGFBP4-1 reprograms energy metabolism to promote lung cancer progression. Mol Cancer. 16:1542017. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Xiong Y, Qiao T, Li X, Jia L and Han Y: Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7:6124–6136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ping W, Senyan H, Li G, Yan C and Long L: Increased lactate in gastric cancer tumor-infiltrating lymphocytes is related to impaired T cell function due to miR-34a deregulated lactate dehydrogenase A. Cell Physiol Biochem. 49:828–836. 2018. View Article : Google Scholar : PubMed/NCBI | |
Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, Gabril M, Filter ER, Girgis AH, Bjarnason GA, et al: Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer. 13:1012014. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Pei H, Hu W, Ma J, Zhang J, Mao W, Nie J, Xu C, Li B, Hei TK, et al: Long non-coding RNA CRYBG3 regulates glycolysis of lung cancer cells by interacting with lactate dehydrogenase A. J Cancer. 9:2580–2588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R, Lee J, Haemmerle M, Ling H, Previs RA, Pradeep S, Wu SY, Ivan C, Ferracin M, Dennison JB, et al: Long noncoding RNA ceruloplasmin promotes cancer growth by altering glycolysis. Cell Rep. 13:2395–2402. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiang S, Gu H, Jin L, Thorne RF, Zhang XD and Wu M: LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect. Proc Natl Acad Sci USA. 115:E1465–E1474. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Ji G, Le X, Wang C, Xu L, Feng M, Zhang Y, Yang H, Xuan Y, Yang Y, et al: Long noncoding RNA LINC00092 acts in cancer-associated fibroblasts to drive glycolysis and progression of ovarian cancer. Cancer Res. 77:1369–1382. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hung CL, Wang LY, Yu YL, Chen HW, Srivastava S, Petrovics G and Kung HJ: A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci USA. 111:18697–18702. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI and Soucek L: Endogenous Myc maintains the tumor microenvironment. Genes Dev. 25:907–916. 2011. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL, Rue EA, Iyer NV, Pang MG and Kearns WG: Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. Genomics. 34:437–439. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI | |
Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT, Cui B, Wang HF, Zhao Y, An F, et al: Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene. 37:1062–1074. 2018. View Article : Google Scholar : PubMed/NCBI | |
Su X, Li G and Liu W: The Long noncoding RNA cancer susceptibility candidate 9 promotes nasopharyngeal carcinogenesis via stabilizing HIF1α. DNA Cell Biol. 36:394–400. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shao W, Wang D, Chiang YT, Ip W, Zhu L, Xu F, Columbus J, Belsham DD, Irwin DM, Zhang H, et al: The Wnt signaling pathway effector TCF7L2 controls gut and brain proglucagon gene expression and glucose homeostasis. Diabetes. 62:789–800. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sethi JK and Vidal-Puig A: Wnt signalling and the control of cellular metabolism. Biochem J. 427:1–17. 2010. View Article : Google Scholar : PubMed/NCBI | |
Laplante M and Sabatini DM: mTOR signaling in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, Pikarsky E and Karni R: Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2. Cancer Res. 79:2480–2493. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G and Ciriolo MR: p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal. 18:386–399. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, Kamphorst JJ, Rabinowitz JD, Jain SK, Hidalgo M, et al: Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res. 75:3355–3364. 2015. View Article : Google Scholar : PubMed/NCBI | |
Greenblatt MS, Feitelson MA, Zhu M, Bennett WP, Welsh JA, Jones R, Borkowski A and Harris CC: Integrity of p53 in hepatitis B × antigen-positive and -negative hepatocellular carcinomas. Cancer Res. 57:426–432. 1997.PubMed/NCBI | |
Feitelson MA, Zhu M, Duan LX and London WT: Hepatitis B × antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene. 8:1109–1117. 1993.PubMed/NCBI | |
Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Ma J, Liu S, Wang J and Chen Y: A noncoding RNA LINC00504 interacts with c-Myc to regulate tumor metabolism in colon cancer. J Cell Biochem. 120:14725–14734. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li N and Zhan X and Zhan X: The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecol Oncol. 150:343–354. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu MC, Arimura GK and Yunis AA: Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase. Int J Cancer. 22:728–733. 1978. View Article : Google Scholar : PubMed/NCBI | |
Eagle H: The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med. 102:595–600. 1955. View Article : Google Scholar : PubMed/NCBI | |
Lai HS, Lee JC, Lee PH, Wang ST and Chen WJ: Plasma free amino acid profile in cancer patients. Semin Cancer Biol. 15:267–276. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hsieh AL, Walton ZE, Altman BJ, Stine ZE and Dang CV: MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 43:11–21. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Fang YZ, Yang S, Lupton JR and Turner ND: Glutathione metabolism and its implications for health. J Nutr. 134:489–492. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, Sudderth J, Calvaruso MA, Lumata L, Mitsche M, et al: Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell. 56:414–424. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Yu X, Fan C, Wang H, Wang R, Feng C and Guan H: Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J Mol Med (Berl). 96:777–790. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li HJ, Li X, Pang H, Pan JJ, Xie XJ and Chen W: Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn J Clin Oncol. 45:1055–1063. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kitayama K, Yashiro M, Morisaki T, Miki Y, Okuno T, Kinoshita H, Fukuoka T, Kasashima H, Masuda G, Hasegawa T, et al: Pyruvate kinase isozyme M2 and glutaminase might be promising molecular targets for the treatment of gastric cancer. Cancer Sci. 108:2462–2469. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lampa M, Arlt H, He T, Ospina B, Reeves J, Zhang B, Murtie J, Deng G, Barberis C, Hoffmann D, et al: Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One. 12:e01850922017. View Article : Google Scholar : PubMed/NCBI | |
Deng SJ, Chen HY, Zeng Z, Deng S, Zhu S, Ye Z, He C, Liu ML, Huang K, Zhong JX, et al: Nutrient stress-dysregulated antisense lncRNA GLS-AS impairs GLS-mediated metabolism and represses pancreatic cancer progression. Cancer Res. 79:1398–1412. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Cui S, Wan T, Li X, Tian W, Zhang R, Luo L and Shi Y: Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote glioma progression by sponging miR-126-5p. J Cell Physiol. 233:6822–6831. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Yan X, Jin Y, Yang X, Yu X, Zhou L, Han S, Yuan Q and Yang M: MiRNA-192 (corrected) and miRNA-204 Directly Suppress lncRNA HOTTIP and Interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma. PLoS Genet. 11:e10057262015. View Article : Google Scholar : PubMed/NCBI | |
Luan W, Zhang X, Ruan H, Wang J and Bu X: Long noncoding RNA OIP5-AS1 acts as a competing endogenous RNA to promote glutamine catabolism and malignant melanoma growth by sponging miR-217. J Cell Physiol. Feb 18–2019.(Epub ahead of print). doi: 10.1002/jcp.28335. View Article : Google Scholar | |
Zhuo ZJ, Zhang R, Zhang J, Zhu J, Yang T, Zou Y, He J and Xia H: Associations between lncRNA MEG3 polymorphisms and neuroblastoma risk in Chinese children. Aging (Albany NY). 10:481–491. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Lin A, Han D, Zhou H, Cheng J, Zhang J, Fu W, Zhuo Z and He J: LINC00673 rs11655237 C>T and susceptibility to Wilms tumor: A five-center case-control study. J Gene Med. 21:e31332019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhuo ZJ, Zhou H, Liu J, Liu Z, Zhang J, Cheng J, Li S, Zhou H, Zhou R, et al: Additional data support the role of LINC00673 rs11655237 C>T in the development of neuroblastoma. Aging (Albany NY). 11:2369–2377. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hapala I, Marza E and Ferreira T: Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol Cell. 103:271–285. 2011. View Article : Google Scholar : PubMed/NCBI | |
Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM, Defoort C, Lovegrove JA, Drevon CA, Gibney MJ, et al: Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J Lipid Res. 51:1793–1800. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Tu Y, Simpson PJ and Kuhajda FP: Malonyl-CoA decarboxylase inhibition is selectively cytotoxic to human breast cancer cells. Oncogene. 28:2979–2987. 2009. View Article : Google Scholar : PubMed/NCBI | |
Núñez V, Alameda D, Rico D, Mota R, Gonzalo P, Cedenilla M, Fischer T, Boscá L, Glass CK, Arroyo AG and Ricote M: Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression. Proc Natl Acad Sci USA. 107:10626–10631. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cui M, Xiao Z, Wang Y, Zheng M, Song T, Cai X, Sun B, Ye L and Zhang X: Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Res. 75:846–857. 2015. View Article : Google Scholar : PubMed/NCBI | |
Christensen LL, True K, Hamilton MP, Nielsen MM, Damas ND, Damgaard CK, Ongen H, Dermitzakis E, Bramsen JB, Pedersen JS, et al: SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol. 10:1266–1282. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Shen S, Yang Y, Qin S, Huang L, Zhang H, Chen L, Chen Y, Li S, She S, et al: Inhibition of FASN suppresses migration, invasion and growth in hepatoma carcinoma cells by deregulating the HIF-1α/IGFBP1 pathway. Int J Oncol. 50:883–892. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Yin X, Wu L, Qin Q and Xu J: MAPK/P53-mediated FASN expression in bone tumors. Oncol Lett. 13:4035–4038. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tao BB, He H, Shi XH, Wang CL, Li WQ, Li B, Dong Y, Hu GH, Hou LJ, Luo C, et al: Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci. 20:717–720. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Ma J and Cai D: Increased HAGLR expression promotes non-small cell lung cancer proliferation and invasion via enhanced de novo lipogenesis. Tumour Biol. Apr 26–2017.(Epub ahead of print). doi: org/10.1177/1010428317697574. | |
Ma DD, Yuan LL and Lin LQ: LncRNA HOTAIR contributes to the tumorigenesis of nasopharyngeal carcinoma via up-regulating FASN. Eur Rev Med Pharmacol Sci. 21:5143–5152. 2017.PubMed/NCBI | |
Bolsoni-Lopes A and Alonso-Vale MI: Lipolysis and lipases in white adipose tissue-an update. Arch Endocrinol Metab. 59:335–342. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Liang Y, Song R, Yang G, Han J, Lan Y, Pan S, Zhu M, Liu Y, Wang Y, et al: Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol Cancer. 17:902018. View Article : Google Scholar : PubMed/NCBI | |
Shang C, Wang W, Liao Y, Chen Y, Liu T, Du Q, Huang J, Liang Y, Liu J, Zhao Y, et al: LNMICC promotes nodal metastasis of cervical cancer by reprogramming fatty acid metabolism. Cancer Res. 78:877–890. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li D, Cheng M, Niu Y, Chi X, Liu X, Fan J, Fan H, Chang Y and Yang W: Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int J Biol Sci. 13:349–357. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kulsum S, Sudheendra HV, Pandian R, Ravindra DR, Siddappa G, R N, Chevour P, Ramachandran B, Sagar M, Jayaprakash A, et al: Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Mol Carcinog. 56:694–711. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Jones AW, Fassone E, Sweeney MG, Lebiedzinska M, Suski JM, Wieckowski MR, Tajeddine N, Hargreaves IP, Yasukawa T, et al: PGC-1β mediates adaptive chemoresistance associated with mitochondrial DNA mutations. Oncogene. 32:2592–2600. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zeng S, Ma J, Deng G, Qu Y, Guo C and Shen H: Nestin overexpression in hepatocellular carcinoma associates with epithelial-mesenchymal transition and chemoresistance. J Exp Clin Cancer Res. 35:1112016. View Article : Google Scholar : PubMed/NCBI | |
McNeil EM and Melton DW: DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res. 40:9990–10004. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Jung JY, Choi S, Lee H, Morales LD, Koh JT, Kim SH, Choi YD, Choi C, Slaga TJ, et al: GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy. Autophagy. 13:149–168. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Li K, Feng J, Liu G, Feng Y and Zhang X: LncRNA-DANCR Interferes with miR-125b-5p/HK2 axis to desensitize colon cancer cells to cisplatin vis activating anaerobic glycolysis. Front Oncol. 10:10342020. View Article : Google Scholar : PubMed/NCBI | |
Zheng ZQ, Li ZX, Guan JL, Liu X, Li JY, Chen Y, Lin L, Kou J, Lv JW, Zhang LL, et al: Long noncoding RNA TINCR-mediated regulation of acetyl-coa metabolism promotes nasopharyngeal carcinoma progression and chemoresistance. Cancer Res. 80:5174–5188. 2020. View Article : Google Scholar : PubMed/NCBI | |
He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, Liu Z, Yao Z, Wu Q, Liao W, et al: MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 38:4637–4654. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wen JF, Jiang YQ, Li C, Dai XK, Wu T and Yin WZ: LncRNA-SARCC sensitizes osteosarcoma to cisplatin through the miR-143-mediated glycolysis inhibition by targeting Hexokinase 2. Cancer Biomark. 28:231–246. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al: JAK/STAT3-Regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27:136–150.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hoy SM: Patisiran: First global approval. Drugs. 78:1625–1631. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Guo Y, Seo W, Zhang R, Lu C, Wang Y, Luo L, Paul B, Yan W, Saxena D and Li X: Targeting cellular metabolism to reduce head and neck cancer growth. Sci Rep. 9:49952019. View Article : Google Scholar : PubMed/NCBI | |
Elgogary A, Xu Q, Poore B, Alt J, Zimmermann SC, Zhao L, Fu J, Chen B, Xia S, Liu Y, et al: Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc Natl Acad Sci USA. 113:E5328–E5336. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qing L and Qing W: Hypoxia inducible factor 1 inhibitors for cancer therapy. Minerva Chir. 74:442–444. 2019. View Article : Google Scholar : PubMed/NCBI |