1
|
Amin AR, Kucuk O, Khuri FR and Shin DM:
Perspectives for cancer prevention with natural compounds. J Clin
Oncol. 27:2712–2725. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rahman MA, Amin AR and Shin DM:
Chemopreventive potential of natural compounds in head and neck
cancer. Nutr Cancer. 62:973–987. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gullett NP, Ruhul AR, Amin AR, Bayraktar
S, Pezzuto JM, Shin DM, Khuri FR, Aggarwal BB, Surh YJ and Kucuk O:
Cancer prevention with natural compounds. Semin Oncol. 37:258–281.
2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Park W, Amin AR, Chen ZG and Shin DM: New
perspectives of curcumin in cancer prevention. Cancer Prev Res
(Phila). 6:387–400. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Burns J, Yokota T, Ashihara H, Lean MEJ
and Crozier A: Plant foods and herbal sources of resveratrol. J
Agric Food Chem. 50:3337–3340. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cione E, Torre CL, Cannataro R, Caroleo
MC, Plastina P and Gallelli L: Quercetin, epigallocatechin gallate,
curcumin, and resveratrol: From dietary sources to human MicroRNA
modulation. Molecules. 25:632020. View Article : Google Scholar
|
7
|
Huang TT, Lin HC, Chen CC, Lu CC, Wei CF,
Wu TS, Liu FG and Lai HC: Resveratrol induces apoptosis of human
nasopharyngeal carcinoma cells via activation of multiple apoptotic
pathways. J Cell Physiol. 226:720–728. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lin HY, Sun M, Tang HY, Simone TM, Wu YH,
Grandis JR, Cao HJ, Davis PJ and Davis FB: Resveratrol causes
COX-2- and p53-dependent apoptosis in head and neck squamous cell
cancer cells. J Cell Biochem. 104:2131–2142. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Berta GN, Salamone P, Sprio AE, Di Scipio
F, Marinos LM, Sapino S, Carlotti ME, Cavalli R and Di Carlo F:
Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced
oral carcinogenesis in hamster cheek pouch by topical application
of resveratrol complexed with 2-hydroxypropyl-beta-cyclodextrin.
Oral Oncol. 46:42–48. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tyagi A, Gu M, Takahata T, Frederick B,
Agarwal C, Siriwardana S, Agarwal R and Sclafani RA: Resveratrol
selectively induces DNA Damage, independent of Smad4 expression, in
its efficacy against human head and neck squamous cell carcinoma.
Clin Cancer Res. 17:5402–5411. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Patel KR, Scott E, Brown VA, Gescher AJ,
Steward WP and Brown K: Clinical trials of resveratrol. Ann N Y
Acad Sci. 1215:161–169. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Brown VA, Patel KR, Viskaduraki M, Crowell
JA, Perloff M, Booth TD, Vasilinin G, Sen A, Schinas AM, Piccirilli
G, et al: Repeat dose study of the cancer chemopreventive agent
resveratrol in healthy volunteers: Safety, pharmacokinetics, and
effect on the insulin-like growth factor axis. Cancer Res.
70:9003–9011. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Patel KR, Brown VA, Jones DJ, Britton RG,
Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA,
et al: Clinical pharmacology of resveratrol and its metabolites in
colorectal cancer patients. Cancer Res. 70:7392–7399. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chow HH, Garland LL, Hsu CH, Vining DR,
Chew WM, Miller JA, Perloff M, Crowell JA and Alberts DS:
Resveratrol modulates drug- and carcinogen-metabolizing enzymes in
a healthy volunteer study. Cancer Prev Res (Phila). 3:1168–1175.
2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
la Porte C, Voduc N, Zhang G, Seguin I,
Tardiff D, Singhal N and Cameron DW: Steady-State pharmacokinetics
and tolerability of trans-resveratrol 2000 mg twice daily with
food, quercetin and alcohol (ethanol) in healthy human subjects.
Clin Pharmacokinet. 49:449–454. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Almeida L, Vaz-da-Silva M, Falcao A,
Soares E, Costa R, Loureiro AI, Fernandes-Lopes C, Rocha JF, Nunes
T, Wright L and Soares-da-Silva P: Pharmacokinetic and safety
profile of trans-resveratrol in a rising multiple-dose study in
healthy volunteers. Mol Nutr Food Res. 53 (Suppl 1):S7–S15. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Boocock DJ, Faust GE, Patel KR, Schinas
AM, Brown VA, Ducharme MP, Booth TD, Crowell JA, Perloff M, Gescher
AJ, et al: Phase I dose escalation pharmacokinetic study in healthy
volunteers of resveratrol, a potential cancer chemopreventive
agent. Cancer Epidemiol Biomarkers Prev. 16:1246–1252. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Juan ME, Gonzalez-Pons E and Planas JM:
Multidrug resistance proteins restrain the intestinal absorption of
trans-resveratrol in rats. J Nutr. 140:489–495. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shirakami Y, Shimizu M and Moriwaki H:
Cancer chemoprevention with green tea catechins: From bench to bed.
Curr Drug Targets. 13:1842–1857. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim JW, Amin AR and Shin DM:
Chemoprevention of head and neck cancer with green tea polyphenols.
Cancer Prev Res (Phila). 3:900–909. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chakrawarti L, Agrawal R, Dang S, Gupta S
and Gabrani R: Therapeutic effects of EGCG: A patent review. Expert
Opin Ther Pat. 26:907–916. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gan RY, Li HB, Sui ZQ and Corke H:
Absorption, metabolism, anti-cancer effect and molecular targets of
epigallocatechin gallate (EGCG): An updated review. Crit Rev Food
Sci Nutr. 58:924–941. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pisters KM, Newman RA, Coldman B, Shin DM,
Khuri FR, Hong WK, Glisson BS and Lee JS: Phase I trial of oral
green tea extract in adult patients with solid tumors. J Clin
Oncol. 19:1830–1838. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shanafelt TD, Call TG, Zent CS, LaPlant B,
Bowen DA, Roos M, Secreto CR, Ghosh AK, Kabat BF, Lee MJ, et al:
Phase I trial of daily oral Polyphenon E in patients with
asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J Clin
Oncol. 27:3808–3814. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tsao AS, Liu D, Martin J, Tang XM, Lee JJ,
El-Naggar AK, Wistuba I, Culotta KS, Mao L, Gillenwater A, et al:
Papadimitrakopoulou V, Phase II randomized, placebo-controlled
trial of green tea extract in patients with high-risk oral
premalignant lesions. Cancer Prev Res (Phila). 2:931–941. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Basu A, Du M, Sanchez K, Leyva MJ, Betts
NM, Blevins S, Wu M, Aston CE and Lyons TJ: Green tea minimally
affects biomarkers of inflammation in obese subjects with metabolic
syndrome. Nutrition. 27:206–213. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kumar NB, Pow-Sang J, Egan KM, Spiess PE,
Dickinson S, Salup R, Helal M, McLarty J, Williams CR, Schreiber F,
et al: Randomized, placebo-controlled trial of green tea catechins
for prostate cancer prevention. Cancer Prev Res (Phila). 8:879–887.
2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shin DM: Oral cancer prevention advances
with a translational trial of green tea. Cancer Prev Res (Phila).
2:919–921. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Amin AR, Wang D, Zhang H, Peng S, Shin HJ,
Brandes JC, Tighiouart M, Khuri FR, Chen ZG and Shin DM: Enhanced
anti-tumor activity by the combination of the natural compounds
(−)-epigallocatechin-3-gallate and luteolin: Potential role of p53.
J Biol Chem. 285:34557–34565. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Amin AR, Haque A, Rahman MA, Chen ZG,
Khuri FR and Shin DM: Curcumin induces apoptosis of upper
aerodigestive tract cancer cells by targeting multiple pathways.
PLoS One. 10:e01242182015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Reiss M, Pitman SW and Sartorelli AC:
Modulation of the terminal differentiation of human squamous
carcinoma cells in vitro by all-trans-retinoic acid. J Natl Cancer
Inst. 74:1015–1023. 1985.PubMed/NCBI
|
32
|
Zhao M, Sano D, Pickering CR, Jasser SA,
Henderson YC, Clayman GL, Sturgis EM, Ow TJ, Lotan R, Carey TE, et
al: Assembly and initial characterization of a panel of 85
genomically validated cell lines from diverse head and neck tumor
sites. Clin Cancer Res. 17:7248–7264. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
R Core Team (2013), . R: A language and
environment for statistical computing. R Foundation for Statistical
Computing; Vienna, Austria: http://www.R-project.org/2020
|
34
|
Shen LF, Zhao X, Zhou SH, Lu ZJ, Zhao K,
Fan J and Zhou ML: In vivo evaluation of the effects of
simultaneous inhibition of GLUT-1 and HIF-1α by antisense
oligodeoxynucleotides on the radiosensitivity of laryngeal
carcinoma using micro 18F-FDG PET/CT. Oncotarget.
8:34709–34726. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhu S, Moore TW, Lin X, Morii N, Mancini
A, Howard RB, Culver D, Arrendale RF, Reddy P, Evers TJ, et al:
Synthetic curcumin analog EF31 inhibits the growth of head and neck
squamous cell carcinoma xenografts. Integr Biol (Camb). 4:633–640.
2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang X, Chen ZG, Choe MS, Lin Y, Sun SY,
Wieand HS, Shin HJ, Chen A, Khuri FR and Shin DM: Tumor growth
inhibition by simultaneously blocking epidermal growth factor
receptor and cyclooxygenase-2 in a xenograft model. Clin Cancer
Res. 11:6261–6269. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cancer Genome Atlas Network, .
Comprehensive genomic characterization of head and neck squamous
cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Leemans CR, Snijders PJF and Brakenhoff
RH: The molecular landscape of head and neck cancer. Nat Rev
Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Anisuzzaman AS, Haque A, Rahman MA, Wang
D, Fuchs JR, Hurwitz S, Liu Y, Sica G, Khuri FR, Chen ZG, et al:
Preclinical in vitro, in vivo, and pharmacokinetic evaluations of
FLLL12 for the prevention and treatment of head and neck cancers.
Cancer Prev Res (Phila). 9:63–73. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gotwals P, Cameron S, Cipolletta D,
Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S,
Sabatos-Peyton C, Petruzzelli L, et al: Prospects for combining
targeted and conventional cancer therapy with immunotherapy. Nat
Rev Cancer. 17:286–301. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Carneiro BA and El-Deiry WS: Targeting
apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Faber AC, Ebi H, Costa C and Engelman JA:
Apoptosis in targeted therapy response: The role of BIM. Adv
Pharmacol. 65:519–542. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Camidge DR, Pao W and Sequist LV: Acquired
resistance to TKIs in solid tumors: Learning from lung cancer. Nat
Rev Clin Oncol. 11:473–481. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hata AN, Engelman JA and Faber AC: The
BCL2 family: Key mediators of the apoptotic response to targeted
anticancer therapeutics. Cancer Discov. 5:475–487. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Agrawal N, Frederick MJ, Pickering CR,
Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, et
al: Exome sequencing of head and neck squamous cell carcinoma
reveals inactivating mutations in NOTCH1. Science. 333:1154–1157.
2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Stransky N, Egloff AM, Tward AD, Kostic
AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C,
McKenna A, et al: The mutational landscape of head and neck
squamous cell carcinoma. Science. 333:1157–1160. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Poetsch M, Lorenz G and Kleist B:
Detection of new PTEN/MMAC1 mutations in head and neck squamous
cell carcinomas with loss of chromosome 10. Cancer Genet Cytogenet.
132:20–24. 2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Shao X, Tandon R, Samara G, Kanki H, Yano
H, Close LG, Parsons R and Sato T: Mutational analysis of the PTEN
gene in head and neck squamous cell carcinoma. Int J Cancer.
77:684–688. 1998. View Article : Google Scholar : PubMed/NCBI
|
49
|
Madera D, Vitale-Cross L, Martin D,
Schneider A, Molinolo AA, Gangane N, Carey TE, McHugh JB, Komarck
CM, Walline HM, et al: Prevention of tumor growth driven by PIK3CA
and HPV oncogenes by targeting mTOR signaling with metformin in
oral squamous carcinomas expressing OCT3. Cancer Prev Res (Phila).
8:197–207. 2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sun ZJ, Zhang L, Hall B, Bian Y, Gutkind
JS and Kulkarni AB: Chemopreventive and chemotherapeutic actions of
mTOR inhibitor in genetically defined head and neck squamous cell
carcinoma mouse model. Clin Cancer Res. 18:5304–5313. 2012.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Vitale-Cross L, Molinolo AA, Martin D,
Younis RH, Maruyama T, Patel V, Chen W, Schneider A and Gutkind JS:
Metformin prevents the development of oral squamous cell carcinomas
from carcinogen-induced premalignant lesions. Cancer Prev Res
(Phila). 5:562–573. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Shin DM, Zhang H, Saba NF, Chen AY,
Nannapaneni S, Amin AR, Muller S, Lewis M, Sica G, Kono S, et al:
Chemoprevention of head and neck cancer by simultaneous blocking of
epidermal growth factor receptor and cyclooxygenase-2 signaling
pathways: Preclinical and clinical studies. Clin Cancer Res.
19:1244–1256. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Hammond SM: An overview of microRNAs. Adv
Drug Deliv Rev. 87:3–14. 2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zan L, Chen Q, Zhang L and Li X:
Epigallocatechin gallate (EGCG) suppresses growth and
tumorigenicity in breast cancer cells by downregulation of miR-25.
Bioengineered. 10:374–382. 2019. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhu Y, Huang Y, Liu M, Yan Q, Zhao W, Yang
P, Gao Q, Wei J, Zhao W and Ma L: Epigallocatechin gallate inhibits
cell growth and regulates miRNA expression in cervical carcinoma
cell lines infected with different high-risk human papillomavirus
subtypes. Exp Ther Med. 17:1742–1748. 2019.PubMed/NCBI
|
57
|
Fu J, Shrivastava A, Shrivastava SK,
Srivastava RK and Shankar S: Triacetyl resveratrol upregulates
miRNA200 and suppresses the Shh pathway in pancreatic cancer: A
potential therapeutic agent. Int J Oncol. 54:1306–1316.
2019.PubMed/NCBI
|