1
|
Siegel RL, Miller KD, Goding Sauer A,
Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal
A: Colorectal cancer statistics, 2020. CA Cancer J Clin.
70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Neoptolemos JP, Stocken DD, Friess H,
Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C,
Lacaine F, et al: A randomized trial of chemoradiotherapy and
chemotherapy after resection of pancreatic cancer. N Engl J Med.
350:1200–1210. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ariake K, Motoi F, Ohtsuka H, Fukase K,
Masuda K, Mizuma M, Hayashi H, Nakagawa K, Morikawa T, Maeda S, et
al: Predictive risk factors for peritoneal recurrence after
pancreatic cancer resection and strategies for its prevention. Surg
Today. 47:1434–1442. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ariake K, Motoi F, Shimomura H, Mizuma M,
Maeda S, Terao C, Tatewaki Y, Ohtsuka H, Fukase K, Masuda K, et al:
18-fluorodeoxyglucose positron emission tomography predicts
recurrence in resected pancreatic ductal adenocarcinoma. J
Gastrointest Surg. 22:279–287. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yamamoto T, Sugiura T, Mizuno T, Okamura
Y, Aramaki T, Endo M and Uesaka K: Preoperative FDG-PET predicts
early recurrence and a poor prognosis after resection of pancreatic
adenocarcinoma. Ann Surg Oncol. 22:677–684. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hájek P, Chomyn A and Attardi G:
Identification of a novel mitochondrial complex containing
mitofusin 2 and stomatin-like protein 2. J Biol Chem.
282:5670–5681. 2007. View Article : Google Scholar
|
7
|
Da Cruz S, Parone PA, Gonzalo P, Bienvenut
WV, Tondera D, Jourdain A, Quadroni M and Martinou JC: SLP-2
interacts with prohibitins in the mitochondrial inner membrane and
contributes to their stability. Biochim Biophys Acta. 1783:904–911.
2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mitsopoulos P, Chang YH, Wai T, König T,
Dunn SD, Langer T and Madrenas J: Stomatin-like protein 2 is
required for in vivo mitochondrial respiratory chain supercomplex
formation and optimal cell function. Mol Cell Biol. 35:1838–1847.
2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Da Cruz S, De Marchi U, Frieden M, Parone
PA, Martinou JC and Demaurex N: SLP-2 negatively modulates
mitochondrial sodium-calcium exchange. Cell Calcium. 47:11–18.
2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tondera D, Grandemange S, Jourdain A,
Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke
I, Merkwirth C, et al: SLP-2 is required for stress-induced
mitochondrial hyperfusion. EMBO J. 28:1589–1600. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Christie DA, Lemke CD, Elias IM, Chau LA,
Kirchhof MG, Li B, Ball EH, Dunn SD, Hatch GM and Madrenas J:
Stomatin-like protein 2 binds cardiolipin and regulates
mitochondrial biogenesis and function. Mol Cell Biol. 31:3845–3856.
2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chang D, Ma K, Gong M, Cui Y, Liu ZH, Zhou
XG, Zhou CN and Wang TY: SLP-2 overexpression is associated with
tumour distant metastasis and poor prognosis in pulmonary squamous
cell carcinoma. Biomarkers. 15:104–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu D, Zhang L, Shen Z, Tan F, Hu Y, Yu J
and Li G: Increased levels of SLP-2 correlate with poor prognosis
in gastric cancer. Gastric Cancer. 16:498–504. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li XH, He F, Yan SM, Li Y, Cao Y, Huang CY
and Zhou ZW: Increased expression of stomatin-like protein 2
(STOML2) predicts decreased survival in gastric adenocarcinoma: A
retrospective study. Med Oncol. 31:7632014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou C, Li Y, Wang G, Niu W, Zhang J, Wang
G, Zhao Q and Fan L: Enhanced SLP-2 promotes invasion and
metastasis by regulating Wnt/β-catenin signal pathway in colorectal
cancer and predicts poor prognosis. Pathol Res Pract. 215:57–67.
2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang WX, Lin QF, Shen D, Liu SP, Mao WD,
Ma G and Qi WD: Clinicopathological significance of SLP-2
overexpression in human gallbladder cancer. Tumour Biol.
35:419–423. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhu W, Li W, Geng Q, Wang X, Sun W, Jiang
H and Pu X: Silence of stomatin-like protein 2 represses migration
and invasion ability of human liver cancer cells via inhibiting the
nuclear factor kappa B (NF-κB) pathway. Med Sci Monit.
24:7625–7632. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Huang Y, Chen Y, Lin X, Lin Q, Han M and
Guo G: Clinical significance of SLP-2 in hepatocellular carcinoma
tissues and its regulation in cancer cell proliferation, migration,
and EMT. OncoTargets Ther. 10:4665–4673. 2017. View Article : Google Scholar
|
19
|
Cao W, Zhang B, Li J, Liu Y, Liu Z and Sun
B: SLP-2 overexpression could serve as a prognostic factor in node
positive and HER2 negative breast cancer. Pathology. 43:713–718.
2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang J, Song X, Li C and Tian Y:
Expression and clinical significance of SLP-2 in ovarian tumors.
Oncol Lett. 17:4626–4632. 2019.PubMed/NCBI
|
21
|
Deng H, Deng Y, Liu F, Chen J, Li Z, Zhao
K, Guan X and Liang W: Stomatin-like protein 2 is overexpressed in
cervical cancer and involved in tumor cell apoptosis. Oncol Lett.
14:6355–6364. 2017.PubMed/NCBI
|
22
|
Qu H, Jiang W, Wang Y and Chen P: STOML2
as a novel prognostic biomarker modulates cell proliferation,
motility and chemo-sensitivity via IL6-Stat3 pathway in head and
neck squamous cell carcinoma. Am J Transl Res. 11:683–695.
2019.PubMed/NCBI
|
23
|
Wang Y, Cao W, Yu Z and Liu Z:
Downregulation of a mitochondria associated protein SLP-2 inhibits
tumor cell motility, proliferation and enhances cell sensitivity to
chemotherapeutic reagents. Cancer Biol Ther. 8:1651–1658. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Song L, Liu L, Wu Z, Lin C, Dai T, Yu C,
Wang X, Wu J, Li M and Li J: Knockdown of stomatin-like protein 2
(STOML2) reduces the invasive ability of glioma cells through
inhibition of the NF-κB/MMP-9 pathway. J Pathol. 226:534–543. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hu G, Zhang J, Xu F, Deng H, Zhang W, Kang
S and Liang W: Stomatin-like protein 2 inhibits cisplatin-induced
apoptosis through MEK/ERK signaling and the mitochondrial apoptosis
pathway in cervical cancer cells. Cancer Sci. 109:1357–1368. 2018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Takadate T, Onogawa T, Fukuda T, Motoi F,
Suzuki T, Fujii K, Kihara M, Mikami S, Bando Y, Maeda S, et al:
Novel prognostic protein markers of resectable pancreatic cancer
identified by coupled shotgun and targeted proteomics using
formalin-fixed paraffin-embedded tissues. Int J Cancer.
132:1368–1382. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen DT: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
National Comprehensive Cancer Network, .
NCCN practice guidelines for pancreatic cancer. Version 1.
(2020).https://www.nccn.org/professionals/physician_gls/PDF/pancreatic.pdfSeptember
1–2020
|
29
|
UICC, . TNM Classification of Malignant
Tumours. 7th edition. Sobin LH, Gospodarowicz MK and Wittekind C:
Wiley Blackwell; Hoboken: 2009
|
30
|
von Elm E, Altman DG, Egger M, Pocock SJ,
Gøtzsche PC and Vandenbroucke JP; STROBE Initiative, : The
strengthening the reporting of observational studies in
epidemiology (STROBE) statement: Guidelines for reporting
observational studies. J Clin Epidemiol. 61:344–349. 2008.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Suemizu H, Monnai M, Ohnishi Y, Ito M,
Tamaoki N and Nakamura M: Identification of a key molecular
regulator of liver metastasis in human pancreatic carcinoma using a
novel quantitative model of metastasis in NOD/SCID/gammacnull (NOG)
mice. Int J Oncol. 31:741–751. 2007.PubMed/NCBI
|
32
|
Zhang W, Bouchard G, Yu A, Shafiq M,
Jamali M, Shrager JB, Ayers K, Bakr S, Gentles AJ, Diehn M, et al:
GFPT2-expressing cancer-associated fibroblasts mediate metabolic
reprogramming in human lung adenocarcinoma. Cancer Res.
78:3445–3457. 2018.PubMed/NCBI
|
33
|
Zhou L, Luo M, Cheng LJ, Li RN, Liu B and
Linghu H: Glutamine-fructose-6-phosphate transaminase 2 (GFPT2)
promotes the EMT of serous ovarian cancer by activating the
hexosamine biosynthetic pathway to increase the nuclear location of
β-catenin. Pathol Res Pract. 215:1526812019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Szymura SJ, Zaemes JP, Allison DF, Clift
SH, D'Innocenzi JM, Gray LG, McKenna BD, Morris BB, Bekiranov S,
LeGallo RD, et al: NF-κB upregulates glutamine-fructose-6-phosphate
transaminase 2 to promote migration in non-small cell lung cancer.
Cell Commun Signal. 17:242019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dowling P, Walsh N and Clynes M: Membrane
and membrane-associated proteins involved in the aggressive
phenotype displayed by highly invasive cancer cells. Proteomics.
8:4054–4065. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Marshall S, Bacote V and Traxinger RR:
Discovery of a metabolic pathway mediating glucose-induced
desensitization of the glucose transport system. Role of hexosamine
biosynthesis in the induction of insulin resistance. J Biol Chem.
266:4706–4712. 1991. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang WH, Kim JE, Nam HW, Ju JW, Kim HS,
Kim YS and Cho JW: Modification of p53 with O-linked
N-acetylglucosamine regulates p53 activity and stability. Nat Cell
Biol. 8:1074–1083. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Itkonen HM, Minner S, Guldvik IJ, Sandmann
MJ, Tsourlakis MC, Berge V, Svindland A, Schlomm T and Mills IG:
O-GlcNAc transferase integrates metabolic pathways to regulate the
stability of c-MYC in human prostate cancer cells. Cancer Res.
73:5277–5287. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ghose P, Park EC, Tabakin A,
Salazar-Vasquez N and Rongo C: Anoxia-reoxygenation regulates
mitochondrial dynamics through the hypoxia response pathway,
SKN-1/Nrf, and stomatin-like protein STL-1/SLP-2. PLOS Genet.
9:e10040632013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Karagiannis GS, Condeelis JS and Oktay MH:
Chemotherapy-induced metastasis: Mechanisms and translational
opportunities. Clin Exp Metastasis. 35:269–284. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shah AN, Summy JM, Zhang J, Park SI,
Parikh NU and Gallick GE: Development and characterization of
gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol.
14:3629–3637. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang CT, Li JM, Li LF, Ko YS and Chen JT:
Stomatin-like protein 2 regulates survivin expression in non-small
cell lung cancer cells through β-catenin signaling pathway. Cell
Death Dis. 9:4252018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yallop CA and Svendsen I: The effects of
G418 on the growth and metabolism of recombinant mammalian cell
lines. Cytotechnology. 35:101–114. 2001. View Article : Google Scholar : PubMed/NCBI
|