The clinical significance of PD‑L1 in colorectal cancer (Review)
- Authors:
- Vasileia Ntomi
- Periklis Foukas
- Dimitrios Papaconstantinou
- Ioanna Antonopoulou
- Andreas Pikoulis
- Ioannis Panagiotides
- Emmanouil Pikoulis
- Konstantinos Syrigos
-
Affiliations: Third Department of Surgery, Attikon University Hospital, 12462 Athens, Greece, Second Department of Pathology, Attikon University Hospital, 12462 Athens, Greece, Third Department of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece - Published online on: April 7, 2021 https://doi.org/10.3892/or.2021.8043
- Article Number: 92
This article is mentioned in:
Abstract
Araghi M, Soerjomataram I, Jenkins M, Brierley J, Morris E, Bray F and Arnold M: Global trends in colorectal cancer mortality: Projections to the year 2035. Int J Cancer. 144:2992–3000. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM and Hashemy SI: PD-1/PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother. 110:312–318. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gandini S, Massi D and Mandalà M: PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 100:88–98. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee HT, Lee SH and Heo YS: Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules. 24:11902019. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ishida Y, Agata Y, Shibahara K and Honjo T: Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11:3887–3895. 1992. View Article : Google Scholar : PubMed/NCBI | |
Keir ME, Butte MJ, Freeman GJ and Sharpe AH: PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 26:677–704. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N and Honjo T: Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 291:319–322. 2001. View Article : Google Scholar : PubMed/NCBI | |
Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, et al: Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3:1355–1363. 2013. View Article : Google Scholar : PubMed/NCBI | |
Flies DB and Chen L: Modulation of immune response by B7 family molecules in tumor microenvironments. Immunol Invest. 35:395–418. 2006. View Article : Google Scholar : PubMed/NCBI | |
Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M, Siemens DR, Koti M, Craig AW and Graham CH: Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget. 7:10557–10567. 2016. View Article : Google Scholar : PubMed/NCBI | |
Valentini AM, Pinto FDi, Cariola F, Guerra V, Giannelli G, Caruso ML and Pirrelli M: PD-L1 expression in colorectal cancer defines three subsets of tumor immune microenvironments. Oncotarget. 9:8584–8596. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL and Anders RA: Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Re. 20:5064–5074. 2014. View Article : Google Scholar | |
Patel SP and Kurzrock R: PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 14:847–856. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L and Liu X: Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J. 17:661–674. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang HB, Yao H, Li CS, Liang LX, Zhang Y, Chen YX, Fang JY and Xu J: Rise of PD-L1 expression during metastasis of colorectal cancer: Implications for immunotherapy. J Dig Dis. 18:574–581. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koelzer VH, Lugli A, Dawson H, Hädrich M, Berger MD, Borner M, Mallaev M, Galván JA, Amsler J, Schnüriger B, et al: CD8/CD45RO T-cell infiltration in endoscopic biopsies of colorectal cancer predicts nodal metastasis and survival. J Transl Med. 12:812014. View Article : Google Scholar : PubMed/NCBI | |
Huang CY, Chiang SF, Ke TW, Chen TW, You YS, Chen WT and Chao KSC: Clinical significance of programmed death 1 ligand-1 (CD274/PD-L1) and intra-tumoral CD8+ T-cell infiltration in stage II–III colorectal cancer. Sci Rep. 8:156582018. View Article : Google Scholar : PubMed/NCBI | |
Bupathi M and Wu C: Biomarkers for immune therapy in colorectal cancer: Mismatchrepair deficiency and others. J Gastrointest Oncol. 7:713–720. 2016. View Article : Google Scholar : PubMed/NCBI | |
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI | |
Alexander J, Watanabe T, Wu TT, Rashid A, Li S and Hamilton SR: Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 158:527–535. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ward R, Meagher A, Tomlinson I, O'Connor T, Norrie M, Wu R and Hawkins N: Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut. 48:821–829. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liang JT, Huang KC, Cheng AL, Jeng YM, Wu MS and Wang SM: Clinicopathological and molecular biological features of colorectal cancer in patients less than 40 years of age. Br J Surg. 90:205–214. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lin CC, Lin JK, Lin TC, Chen WS, Yang SH, Wang HS, Lan YT, Jiang JK, Yang MH and Chang SC: The prognostic role of microsatellite instability, codon-specific KRAS, and BRAF mutations in colon cancer. J Surg Oncol. 110:451–457. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M and Gallinger S: Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 342:69–77. 2000. View Article : Google Scholar : PubMed/NCBI | |
Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS, et al: The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rosenbaum MW, Bledsoe JR, Morales-Oyarvide V, Huynh TG and Mino-Kenudson M: PD-L1 expression in colorectal cancer is associated with microsatellite instability, BRAF mutation, medullary morphology and cytotoxic tumor-infiltrating lymphocytes. Mod Pathol. 29:1104–1112. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wyss J, Dislich B, Koelzer VH, Galván JA, Dawson H, Hädrich M, Inderbitzin D, Lugli A, Zlobec I and Berger MD: Stromal PD-1/PD-L1 expression predicts outcome in colon cancer patients. Clin Colorectal Cancer. 18:e20–e38. 2019. View Article : Google Scholar | |
Song M, Chen D, Lu B, Wang C, Zhang J, Huang L, Wang X, Timmons CL, Hu J, Liu B, et al: PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One. 8:e658212013. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tykodi SS: PD-1 as an emerging therapeutic target in renal cell carcinoma: Current evidence. Onco Targets Ther. 7:1349–1359. 2014. View Article : Google Scholar : PubMed/NCBI | |
Massari F, Santoni M, Ciccarese C, Santini D, Alfieri S, Martignoni G, Brunelli M, Piva F, Berardi R, Montironi R, et al: PD-1 blockade therapy in renal cell carcinoma: Current studies and future promises. Cancer Treat Rev. 41:114–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ivashko IN and Kolesar JM: Pembrolizumab and nivolumab: PD-1 inhibitors for advanced melanoma. Am J Health Syst Pharm. 73:193–201. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martin-Liberal J, Kordbacheh T and Larkin J: Safety of pembrolizumab for the treatment of melanoma. Expert Opin Drug Saf. 14:957–964. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sui H, Ma N, Wang Y, Li H, Liu X, Su Y and Yang J: Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer: Toward personalized medicine and combination strategies. J Immunol Res. 2018:69849482018. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Liu Y and Wang Y: PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist. 24 (Suppl 1):S31–S41. 2019. View Article : Google Scholar | |
Myint ZW and Goel G: Role of modern immunotherapy in gastrointestinal malignancies: A review of current clinical progress Ahmed Tarhini; Timothy Burns; Rahul Parikh; Guarvel Goel; Annie im. J Hematol Oncol. 10:1–12. 2017. View Article : Google Scholar | |
Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, de Jesus-Acosta A, Delord JP, Geva R, Gottfried M, Penel N, Hansen AR, et al: Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 38:1–10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Morihiro T, Kuroda S, Kanaya N, Kakiuchi Y, Kubota T, Aoyama K, Tanaka T, Kikuchi S, Nagasaka T, Nishizaki M, et al: PD-L1 expression combined with microsatellite instability/CD8+ tumor infiltrating lymphocytes as a useful prognostic biomarker in gastric cancer. Sci Rep. 9:46332019. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Chen L, Bao C, Sun C, Li J, Wang L and Zhang X: The expression status and prognostic significance of programmed cell death 1 ligand 1 in gastrointestinal tract cancer: A systematic review and meta-analysis. Onco Targets Ther. 8:2617–2625. 2015.PubMed/NCBI | |
Ko YS and Pyo JS: Clinicopathological significance and prognostic role of tumor-infiltrating lymphocytes in colorectal cancer. Int J Biol Markers. 34:132–138. 2019. View Article : Google Scholar : PubMed/NCBI | |
Droeser RA, Hirt C, Viehl CT, Frey DM, Nebiker C, Huber X, Zlobec I, Eppenberger-Castori S, Tzankov A, Rosso R, et al: Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer. 49:2233–2242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liang L, Dai W, Cai G, Xu Y, Li X, Li Q and Cai S: Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 15:552016. View Article : Google Scholar : PubMed/NCBI | |
Enkhbat T, Nishi M, Takasu C, Yoshikawa K, Jun H, Tokunaga T, Kashihara H, Ishikawa D and Shimada M: Programmed cell death ligand 1 expression is an independent prognostic factor in colorectal cancer. Anticancer Res. 38:3367–3373. 2018. View Article : Google Scholar : PubMed/NCBI | |
Udager AM, Liu TY, Skala SL, Magers MJ, McDaniel AS, Spratt DE, Feng FY, Siddiqui J, Cao X, Fields KL, et al: Frequent PD-L1 expression in primary and metastatic penile squamous cell carcinoma: Potential opportunities for immunotherapeutic approaches. Ann Oncol. 27:1706–1712. 2016. View Article : Google Scholar : PubMed/NCBI | |
Slater NA and Googe PB: PD-L1 expression in cutaneous squamous cell carcinoma correlates with risk of metastasis. J Cutan Pathol. 43:663–670. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eriksen AC, Sørensen FB, Lindebjerg J, Hager H, dePont Christensen R, Kjær-Frifeldt S and Hansen TF: Programmed death ligand-1 expression in stage II colon cancer-experiences from a nationwide populationbased cohort. BMC Cancer. 19:1422019. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Park HE, Cho NY, Lee HS and Kang GH: Characterisation of PD-L1-positive subsets of microsatellite-unstable colorectal cancers. Br J Cancer. 115:490–496. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koganemaru S, Inoshita N, Miura Y, Miyama Y, Fukui Y, Ozaki Y, Tomizawa K, Hanaoka Y, Toda S, Suyama K, et al: Prognostic value of programmed death-ligand 1 expression in patients with stage III colorectal cancer. Cancer Sci. 108:853–858. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee KS, Kwak Y, Ahn S, Shin E, Oh HK, Kim DW, Kang SB, Choe G, Kim WH and Lee HS: Prognostic implication of CD274 (PD-L1) protein expression in tumor-infiltrating immune cells for microsatellite unstable and stable colorectal cancer. Cancer Immunol Immunother. 66:927–939. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mehta KR, Nakao K, Zuraek MB, Ruan DT, Bergsland EK, Venook AP, Moore DH, Tokuyasu TA, Jain AN, Warren RS, et al: Fractional genomic alteration detected by array-based comparative genomic hybridization independently predicts survival after hepatic resection for metastatic colorectal cancer. Clin Cancer Res. 11:1791–1797. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liang L, Fang JY and Xu J: Somatic gene copy number alterations in colorectal cancer: New quest for cancer drivers and biomarkers. Oncogene. 35:2011–2019. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, et al: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 7:126322016. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Wu D, Li L, Chai Y and Huang J: PD-L1 and survival in solid tumors: A meta-analysis. PLoS One. 10:e01314032015. View Article : Google Scholar : PubMed/NCBI | |
Shi SJ, Wang LJ, Wang GD, Guo ZY, Wei M, Meng YL, Yang AG and Wen WH: B7-H1 Expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells. PLoS One. 8:e760122013. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Chen L, Zou L, Yang P, Wu R, Mao Y, Zhou H, Li R, Wang K, Wang W, et al: miR-20b, −21, and −130b inhibit PTEN expression resulting in B7-H1 over-expression in advanced colorectal cancer. Hum Immunol. 75:348–353. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Gu L, Mao D, Chen M and Jin R: Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: A systematic review and meta-analysis. World J Surg Oncol. 17:42019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Ahn YH, Chen Y, Tan X, Guo L, Gibbons DL, Ungewiss C, Peng DH, Liu X, Lin SH, et al: ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism. J Clin Invest. 124:2696–2708. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Wang Q, Gao Z, Yu Z, Wu Y and Lu Q: Programmed death-ligand 1 and survival in colorectal cancers: A meta-analysis. Int J Biol Markers. 34:356–363. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, He M, Zhou Y, Yang C, Wei S, Bian X, Christopher O and Xie L: The Prognostic and clinicopathological roles of PD-L1 expression in colorectal cancer: A systematic review and meta-analysis. Front Pharmacol. 10:1392019. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI | |
Goldstein NS, Bhanot P, Odish E and Hunter S: Hyperplastic-like colon polyps that preceded microsatellite-unstable adenocarcinomas. Am J Clin Pathol. 119:778–796. 2003. View Article : Google Scholar : PubMed/NCBI | |
Iino H, Jass JR, Simms LA, Young J, Leggett B, Ajioka Y and Watanabe H: DNA microsatellite instability in hyperplastic polyps, serrated adenomas, and mixed polyps: A mild mutator pathway for colorectal cancer? J Clin Pathol. 52:5–9. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tuppurainen K, Mäkinen JM, Junttila O, Liakka A, Kyllönen AP, Tuominen H, Karttunen TJ and Mäkinen MJ: Morphology and microsatellite instability in sporadic serrated and non-serrated colorectal cancer. J Pathol. 207:285–294. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Qin H, Huang Z, Li S, Zhu X, He J, He J, Yang J, Yu X and Yi X: Clinical significance of programmed death ligand-1 (PD-L1) in colorectal serrated adenocarcinoma. Int J Clin Exp Pathol. 8:9351–9359. 2015.PubMed/NCBI | |
Guillem JG, Chessin DB, Cohen AM, Shia J, Mazumdar M, Enker W, Paty PB, Weiser MR, Klimstra D, Saltz L, et al: Long-term oncologic outcome following preoperative combined modality therapy and total mesorectal excision of locally advanced rectal cancer. Ann Surg. 241:828–829. 2005. View Article : Google Scholar | |
Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A and Ollier JC; EORTC Radiotherapy Group Trial 22921, : Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 355:1114–1123. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF, et al: Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 351:1731–1740. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jomrich G, Silberhumer GR, Marian B, Beer A and Mullauer L: Programmed death-ligand 1 expression in rectal cancer. Eur Surg. 48:352–356. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hecht M, Büttner-Herold M, Erlenbach-Wünsch K, Haderlein M, Croner R, Grützmann R, Hartmann A, Fietkau R and Distel LV: PD-L1 is upregulated by radiochemotherapy in rectal adenocarcinoma patients and associated with a favourable prognosis. Eur J Cancer. 65:52–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saigusa S, Toiyama Y, Tanaka K, Inoue Y, Mori K, Ide S, Imaoka H, Kawamura M, Mohri Y and Kusunoki M: Implication of programmed cell death ligand 1 expression in tumor recurrence and prognosis in rectal cancer with neoadjuvant chemoradiotherapy. Int J Clin Oncol. 21:946–952. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lim SH, Hong M, Ahn S, Choi YL, Kim KM, Oh D, Ahn YC, Jung SH, Ahn MJ, Park K, et al: Changes in tumour expression of programmed death-ligand 1 after neoadjuvant concurrent chemoradiotherapy in patients with squamous oesophageal cancer. Eur J Cancer. 52:1–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu CT, Chen WC, Chang YH, Lin WY and Chen MF: The role of PD-L1 in the radiation response and clinical outcome for bladder cancer. Sci Rep. 6:197402016. View Article : Google Scholar : PubMed/NCBI | |
Sheng J, Fang W, Yu J, Chen N, Zhan J, Ma Y, Yang Y, Huang Y, Zhao H and Zhang L: Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer. Sci Rep. 6:200902016. View Article : Google Scholar : PubMed/NCBI | |
Wimberly H, Brown JR, Schalper K, Haack H, Silver MR, Nixon C, Bossuyt V, Pusztai L, Lannin DR and Rimm DL: PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res. 3:326–332. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hamada T, Cao Y, Qian ZR, Masugi Y, Nowak JA, Yang J, Song M, Mima K, Kosumi K, Liu L, et al: Aspirin use and colorectal cancer survival according to tumor CD274 (programmed cell death 1 ligand 1) expression status. J Clin Oncol. 35:1836–1844. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li P, Wu H, Zhang H, Shi Y, Xu J, Ye Y, Xia D, Yang J, Cai J and Wu Y: Aspirin use after diagnosis but not prediagnosis improves established colorectal cancer survival: A meta-analysis. Gut. 64:1419–1425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lake RA and Robinson BW: Immunotherapy and chemotherapy-a practical partnership. Nat Rev Cancer. 5:397–405. 2005. View Article : Google Scholar : PubMed/NCBI | |
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, et al: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 520:373–377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Simeone E, Grimaldi AM, Festino L, Giannarelli D, Vanella V, Palla M, Curvietto M, Esposito A, Palmieri G, Mozzillo N and Ascierto PA: Correlation between previous treatment with BRAF inhibitors and clinical response to pembrolizumab in patients with advanced melanoma. Oncoimmunology. 6:e12834622017. View Article : Google Scholar : PubMed/NCBI | |
Sahin U and Tureci O: Personalized vaccines for cancer immunotherapy. Science. 359:1355–1360. 2018. View Article : Google Scholar : PubMed/NCBI | |
Callahan MK, Postow MA and Wolchok JD: CTLA-4 and PD-1 pathway blockade: Combinations in the Clinic. Front Oncol. 4:3852014. | |
Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015. View Article : Google Scholar : PubMed/NCBI | |
Horn L, Spigel DR, Vokes EE, Holgado E, Ready N, Steins M, Poddubskaya E, Borghaei H, Felip E, Paz-Ares L, et al: Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: Two-year outcomes from two randomized, open-label, Phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 35:3924–3933. 2017. View Article : Google Scholar : PubMed/NCBI | |
Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL, Timmerman JM, Collins GP, Ramchandren R, Cohen JB, et al: Nivolumab for Relapsed/refractory classic hodgkin lymphoma after failure of autologous Hematopoietic cell transplantation: Extended follow-Up of the multicohort single-arm Phase II checkmate 205 Trial. J Clin Oncol. 36:1428–1439. 2018. View Article : Google Scholar : PubMed/NCBI | |
El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, et al: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 389:2492–2502. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, et al: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 28:3167–3175. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto N, Nokihara H, Yamada Y, Shibata T, Tamura Y, Seki Y, Honda K, Tanabe Y, Wakui H and Tamura T: Phase I study of Nivolumab, an anti-PD-1 antibody, in patients with malignant solid tumors. Invest New Drugs. 35:207–216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al: Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-Deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Patnaik A, Hwu WJ, Weber JS, et al: Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 315:1600–1609. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gallacher D, Armoiry X, Auguste P, Court R, Mantopoulos T, Patterson J, De Santis M, Cresswell J and Mistry H: Pembrolizumab for previously treated advanced or metastatic urothelial cancer: An evidence review group perspective of a NICE single technology appraisal. Pharmacoeconomics. 37:19–27. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder J, Patnaik A, Aggarwal C, Gubens M, Horn L, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI | |
Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, Snyder ES, Ricart AD, Balakumaran A, Rose S and Moskowitz CH: Programmed Death-1 Blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 34:3733–3739. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tahara M, Muro K, Hasegawa Y, Chung HC, Lin CC, Keam B, Takahashi K, Cheng JD and Bang YJ: Pembrolizumab in Asia-Pacific patients with advanced head and neck squamous cell carcinoma: Analyses from KEYNOTE-012. Cancer Sci. 109:771–776. 2018. View Article : Google Scholar : PubMed/NCBI | |
O'Neil BH, Wallmark JM, Lorente D, Elez E, Raimbourg J, Gomez-Roca C, Ejadi S, Piha-Paul SA, Stein MN, Abdul Razak AR, et al: Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS One. 12:e01898482017. View Article : Google Scholar | |
Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, Burge M, O'Neil B, Kavan P, Yoshino T, et al: Phase II Open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 38:11–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, Powderly JD, Infante JR, Fassò M, Wang YV, et al: Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: Long-term safety, clinical activity, and immune correlates from a phase ia study. J Clin Oncol. 34:833–842. 2016. View Article : Google Scholar : PubMed/NCBI | |
Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, et al: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 515:558–562. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bernard-Tessier A, Bonnet C, Lavaud P, Gizzi M, Loriot Y and Massard C: Atezolizumab (Tecentriq®): Activity, indication and modality of use in advanced or metastatic urinary bladder carcinoma. Bull Cancer. 105:140–145. 2018. View Article : Google Scholar : PubMed/NCBI | |
No authors listed, . Atezolizumab Extends Survival for Breast Cancer. Cancer Discov. Jun. 7:OF102017. | |
D'Angelo SP, Russell J, Lebé C, Chmielowski B, Gambichler T, Grob JJ, Kiecker F, Rabinowits G, Terheyden P, Zwiener I, et al: Efficacy and safety of first-line avelumab treatment in patients with stage iv metastatic merkel cell carcinoma: A preplanned interim analysis of a clinical trial. JAMA Oncol. 4:e1800772018. View Article : Google Scholar | |
Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, Wong DJL, Leach J, Edenfield WJ, Wang D, Grote HJ, et al: Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): Dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 18:599–610. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siu LL, Even C, Mesia R, Remenar E, Daste A, Delord JP, Krauss J, Saba NF, Nabell L, Ready NE, et al: Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-Low/Negative recurrent or metastatic HNSCC: The phase 2 CONDOR randomized clinical trial. JAMA Oncol. 5:195–203. 2019. View Article : Google Scholar : PubMed/NCBI | |
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et al: Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 379:2342–2350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tapia Rico G and Price TJ: Atezolizumab for the treatment of colorectal cancer: The latest evidence and clinical potential. Expert Opin Biol Ther. 18:449–457. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oliveira AF, Bretes L and Furtado I: Review of PD-1/PD-L1 inhibitors in metastatic DMMR/MSI-H colorectal cancer. Front Oncol. 9:3962019. View Article : Google Scholar : PubMed/NCBI |