1
|
Leemans CR, Snijders PJF and Brakenhoff
RH: The molecular landscape of head and neck cancer. Nat Rev
Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
de Martel C, Plummer M, Vignat J and
Franceschi S: Worldwide burden of cancer attributable to HPV by
site, country and HPV type. Int J Cancer. 141:664–670. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Van Doorslaer K, Chen Z, Bernard HU, Chan
PKS, DeSalle R, Dillner J, Forslund O, Haga T, McBride AA, Villa
LL, et al: ICTV virus taxonomy profile: Papillomaviridae. J Gen
Virol. 99:989–990. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kumar A, Rathi E, Hariharapura RC and Kini
SG: Is viral E6 oncoprotein a viable target? A critical analysis in
the context of cervical cancer. Med Res Rev. 40:2019–2048. 2020.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Marur S, D'Souza G, Westra WH and
Forastiere AA: HPV-associated head and neck cancer: A virus-related
cancer epidemic. Lancet Oncol. 11:781–789. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Carrero I, Liu HC, Sikora AG and
Milosavljevic A: Histoepigenetic analysis of HPV- and
tobacco-associated head and neck cancer identifies both
subtype-specific and common therapeutic targets despite divergent
microenvironments. Oncogene. 38:3551–3568. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kamizaki K, Endo M, Minami Y and Kobayashi
Y: Role of noncanonical Wnt ligands and Ror-family receptor
tyrosine kinases in the development, regeneration, and diseases of
the musculoskeletal system. Dev Dyn. 250:27–38. 2021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Huang J, Shi Y, Li H, Tan D, Yang M and Wu
X: Knockdown of receptor tyrosine kinase-like orphan receptor 2
inhibits cell proliferation and colony formation in osteosarcoma
cells by inducing arrest in cell cycle progression. Oncol Lett.
10:3705–3711. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yan L, Du Q, Yao J and Liu R: ROR2
inhibits the proliferation of gastric carcinoma cells via
activation of non-canonical Wnt signaling. Exp Ther Med.
12:4128–4134. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Saji T, Nishita M, Ogawa H, Doi T, Sakai
Y, Maniwa Y and Minami Y: Critical role of the Ror-family of
receptor tyrosine kinases in invasion and proliferation of
malignant pleural mesothelioma cells. Genes Cells. 23:606–613.
2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Endo M, Tanaka Y, Otsuka M and Minami Y:
E2F1-Ror2 signaling mediates coordinated transcriptional regulation
to promote G1/S phase transition in bFGF-stimulated NIH/3T3
fibroblasts. FASEB J. 34:3413–3428. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kobayashi M, Shibuya Y, Takeuchi J, Murata
M, Suzuki H, Yokoo S, Umeda M, Minami Y and Komori T: Ror2
expression in squamous cell carcinoma and epithelial dysplasia of
the oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.
107:398–406. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Enomoto M, Hayakawa S, Itsukushima S, Ren
DY, Matsuo M, Tamada K, Oneyama C, Okada M, Takumi T, Nishita M and
Minami Y: Autonomous regulation of osteosarcoma cell invasiveness
by Wnt5a/Ror2 signaling. Oncogene. 28:3197–3208. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Aoki T, Nishita M, Sonoda J, Ikeda T,
Kakeji Y and Minami Y: Intraflagellar transport 20 promotes
collective cancer cell invasion by regulating polarized
organization of Golgi-associated microtubules. Cancer Sci.
110:1306–1316. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Amin MB, Greene FL, Edge SB, Compton CC,
Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and
Winchester DP: The Eighth edition AJCC Cancer Staging Manual:
Continuing to build a bridge from a population-based to a more
‘personalized’ approach to cancer staging. CA Cancer J Clin.
67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tao X, Zheng B, Yin F, Zeng Z, Li Z,
Griffith CC, Luo B, Ding X, Zhou X and Zhao C: Polymerase Chain
reaction human papillomavirus (HPV) detection and HPV genotyping in
invasive cervical cancers with prior negative HC2 test results. Am
J Clin Pathol. 147:477–483. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Hoppe-Seyler K, Bossler F, Braun JA,
Herrmann AL and Hoppe-Seyler F: The HPV E6/E7 oncogenes: Key
factors for viral carcinogenesis and therapeutic targets. Trends
Microbiol. 26:158–168. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee SH, Lee CR, Rigas NK, Kim RH, Kang MK,
Park NH and Shin KH: Human papillomavirus 16 (HPV16) enhances tumor
growth and cancer stemness of HPV-negative oral/oropharyngeal
squamous cell carcinoma cells via miR-181 regulation.
Papillomavirus Res. 1:116–125. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang Z, Jiang C, Yu C and Fang J:
MicroRNA-208b inhibits human osteosarcoma progression by targeting
ROR2. Tumour Biol. 39:10104283177057512017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Benson E, Li R, Eisele D and Fakhry C: The
clinical impact of HPV tumor status upon head and neck squamous
cell carcinomas. Oral Oncol. 50:565–574. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
O'Connell MP, Fiori JL, Xu M, Carter AD,
Frank BP, Camilli TC, French AD, Dissanayake SK, Indig FE, Bernier
M, et al: The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A
signaling in metastatic melanoma. Oncogene. 29:34–44. 2010.
View Article : Google Scholar
|
23
|
Xu J, Shi J, Tang W, Jiang P, Guo M, Zhang
B and Ma G: ROR2 promotes the epithelial-mesenchymal transition by
regulating MAPK/p38 signaling pathway in breast cancer. J Cell
Biochem. 121:4142–4153. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rasmussen NR, Debebe Z, Wright TM, Brooks
SA, Sendor AB, Brannon AR, Hakimi AA, Hsieh JJ, Choueiri TK,
Tamboli P, et al: Expression of Ror2 mediates invasive phenotypes
in renal cell carcinoma. PLoS One. 9:e1161012014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yeo-Teh NSL, Ito Y and Jha S: High-risk
human papillomaviral oncogenes E6 and E7 target key cellular
pathways to achieve oncogenesis. Int J Mol Sci. 19:17062018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Charette ST and McCance DJ: The E7 protein
from human papillomavirus type 16 enhances keratinocyte migration
in an Akt-dependent manner. Oncogene. 26:7386–7390. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Carrillo D, Muñoz JP, Huerta H, Leal G,
Corvalán A, León O, Calaf GM, Urzúa U, Boccardo E, Tapia JC and
Aguayo F: Upregulation of PIR gene expression induced by human
papillomavirus E6 and E7 in epithelial oral and cervical cells.
Open Biol. 7:1701112017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ikeda T, Nishita M, Hoshi K, Honda T,
Kakeji Y and Minami Y: Mesenchymal stem cell-derived CXCL16
promotes progression of gastric cancer cells by STAT3-mediated
expression of Ror1. Cancer Sci. 111:1254–1265. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
zur Hausen H: Papillomaviruses and cancer:
From basic studies to clinical application. Nat Rev Cancer.
2:342–350. 2002. View
Article : Google Scholar : PubMed/NCBI
|