1
|
Nabhan C: Sipuleucel-T immunotherapy for
castration-resistant prostate cancer. N Engl J Med. 363:1966–1968.
2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Schröder FH, Hugosson J, Roobol MJ,
Tammela TLJ, Ciatto S, Nelen V, Kwiatkowski M, Lujan M, Lilja H,
Zappa M, et al: Screening and prostate-cancer mortality in a
randomized European study. N Engl J Med. 360:1320–1328. 2009.
View Article : Google Scholar
|
3
|
Tomlins SA, Rhodes DR, Perner S,
Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J,
Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription
factor genes in prostate cancer. Science. 310:644–648. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Tomlins SA, Rhodes DR, Perner S,
Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J,
Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription
factor genes in prostate cancer. J Urol. 175:17072006. View Article : Google Scholar
|
5
|
Raimondi A, Sepe P, Claps M, Maccauro M,
Aliberti G, Pagani F, Apollonio G, Randon G, Peverelli G, Seregni
E, et al: Safety and activity of radium-223 in metastatic
castration-resistant prostate cancer: The experience of Istituto
Nazionale dei Tumori. Tumori. 106:406–412. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pernar CH, Ebot EM, Wilson KM and Mucci
LA: The epidemiology of prostate cancer. Cold Spring Harb Perspect
Med. 8:a0303612018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nelson WG, De Marzo AM and Isaacs WB:
Prostate cancer. N Engl J Med. 349:366–381. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xi X, Liu N, Wang Q, Chu Y, Yin Z, Ding Y
and Lu Y: ACT001, a novel PAI-1 inhibitor, exerts synergistic
effects in combination with cisplatin by inhibiting PI3K/AKT
pathway in glioma. Cell Death Dis. 10:7572019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhong W, Yang W, Qin Y, Gu W, Xue Y, Tang
Y, Xu H, Wang H, Zhang C, Wang C, et al: 6-Gingerol stabilized the
p-VEGFR2/VE-cadherin/β-catenin/actin complex promotes microvessel
normalization and suppresses tumor progression. J Exp Clin Cancer
Res. 38:2852019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mahn R, Heukamp LC, Rogenhofer S, Ruecker
AV, Müller SC and Ellinger JR: Circulating microRNAs (miRNA) in
serum of patients with prostate cancer. Urology. 77:1265.e9–e16.
2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xi X, Chu Y, Liu N, Wang Q, Yin Z, Lu Y
and Chen Y: Joint bioinformatics analysis of underlying potential
functions of hsa-let-7b-5p and core genes in human glioma. J Transl
Med. 17:1292019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kim SJ, Ha JW and Zhang BT: Constructing
higher-order miRNA-mRNA interaction networks in prostate cancer via
hypergraph-based learning. BMC Syst Biol. 7:472013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhu Z, Xu Y, Zhao J, Liu Q, Feng W, Fan J
and Wang P: miR-367 promotes epithelial-to-mesenchymal transition
and invasion of pancreatic ductal adenocarcinoma cells by targeting
the Smad7-TGF-β signalling pathway. Br J Cancer. 112:1367–1375.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Campayo M, Navarro A, Viñolas N, Diaz T,
Tejero R, Gimferrer JM, Molins L, Cabanas ML, Ramirez J, Monzo M
and Marrades R: Low miR-145 and high miR-367 are associated with
unfavourable prognosis in resected nonsmall cell lung cancer. Eur
Respir J. 41:1172–1178. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shinde SR and Maddika S: Post
translational modifications of Rab GTPases. Small GTPases. 9:49–56.
2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Prashar A, Schnettger L, Bernard EM and
Gutierrez MG: Rab GTPases in immunity and inflammation. Front Cell
Infect Microbiol. 7:4352017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Solano-Collado V, Rofe A and Spanò S:
Rab32 restriction of intracellular bacterial pathogens. Small
GTPases. 9:216–223. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gao Y, Wilson GR, Stephenson SEM, Bozaoglu
K, Farrer MJ and Lockhart PJ: The emerging role of Rab GTPases in
the pathogenesis of Parkinson's disease. Mov Disord. 33:196–207.
2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ortiz-Sandoval CG, Hughes SC, Dacks JB and
Simmen T: Interaction with the effector dynamin-related protein 1
(Drp1) is an ancient function of Rab32 subfamily proteins. Cell
Logist. 4:e9863992014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rybnicek J, Samtleben S, Herrera-Cruz MS
and Simmen T: Expression of a T39N mutant Rab32 protein arrests
mitochondria movement within neurites of differentiated SH-SY5Y
cells. Small GTPases. 11:289–292. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Haile Y, Deng X, Ortiz-Sandoval C, Tahbaz
N, Janowicz A, Lu JQ, Kerr BJ, Gutowski NJ, Holley JE, Eggleton P,
et al: Rab32 connects ER stress to mitochondrial defects in
multiple sclerosis. J Neuroinflammation. 14:192017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lin Z, Li JW, Wang Y, Chen T, Ren N, Yang
L, Xu W, He H, Jiang Y, Chen X, et al: Abnormal miRNA-30e
expression is associated with breast cancer progression. Clin Lab.
62:121–128. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shibata D, Mori Y, Cai K, Zhang L, Yin J,
Elahi A, Hamelin R, Wong YF, Lo WK, Chung TK, et al: RAB32
hypermethylation and microsatellite instability in gastric and
endometrial adenocarcinomas. Int J Cancer. 119:801–806. 2006.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Alexandratou E, Yova D, Gorpas D, Maragos
P, Agrogiannis G and Kavantzas N: Texture analysis of tissues in
Gleason grading of prostate cancer. Int Soc Opt Photon.
6859:6859042008.
|
25
|
Ozkan TA, Eruyar AT, Cebeci OO, Memik O,
Ozcan L and Kuskonmaz I: Interobserver variability in Gleason
histological grading of prostate cancer. Scand J Urol. 50:420–424.
2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Francisco JS, Moraes HP and Dias EP:
Evaluation of the Image-Pro Plus 4.5 software for automatic
counting of labeled nuclei by PCNA immunohistochemistry. Braz Oral
Res. 18:100–104. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhong W, Hou H, Liu T, Su S, Xi X, Liao Y,
Xie R, Jin G, Liu X, Zhu L, et al: Cartilage oligomeric matrix
protein promotes epithelial-mesenchymal transition by interacting
with transgelin in colorectal cancer. Theranostics. 10:8790–8806.
2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T))method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Ong MHA and Puteh F: Quantitative data
analysis: Choosing between SPSS, PLS, and AMOS in social science
research. Int Interdiscip J Sci Res. 3:14–25. 2017.
|
30
|
Zhong W, Sun B, Gao W, Qin Y, Zhang H,
Huai L, Tang Y, Liang Y, He L, Zhang X, et al: Salvianolic acid A
targeting the transgelin-actin complex to enhance vasoconstriction.
EBioMedicine. 37:246–258. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kantoff PW, Higano CS, Shore ND, Berger
ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims
RB, et al: Sipuleucel-T immunotherapy for castration-resistant
prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Collins AT, Berry PA, Hyde C, Stower MJ
and Maitland NJ: Prospective identification of tumorigenic prostate
cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen J, Shu K, Yao J, et al: Is it
necessary to perform pelvic lymph node dissection in patients with
high-and very high-risk prostate cancer treated with radical
prostatectomy? -a retrospective single-center study. J Clin Urol
(in Chinese) 2018. https://xueshu.baidu.com/usercenter/paper/show?paperid=9a69f7a8534cf198bff20528e96f7190&site=xueshu_se
|
34
|
Zhang W, Zang J, Jing X, Sun Z, Yan W,
Yang D, Shen B and Guo F: Identification of candidate miRNA
biomarkers from miRNA regulatory network with application to
prostate cancer. J Transl Med. 12:662014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Schaefer A, Jung M, Miller K, Lein M,
Kristiansen G, Erbersdobler A and Jung K: Suitable reference genes
for relative quantification of miRNA expression in prostate cancer.
Exp Mol Med. 42:749–758. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sanders I, Holdenrieder S,
Walgenbach-Brünagel G, von Ruecker A, Kristiansen G, Müller SC and
Ellinger J: Evaluation of reference genes for the analysis of serum
miRNA in patients with prostate cancer, bladder cancer and renal
cell carcinoma. Int J Urol. 19:1017–1025. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mikolajczyk SD, Catalona WJ, Evans CL,
Linton HJ, Millar LS, Marker KM, Katir K, Amirkhan A and
Rittenhouse HG: Proenzyme forms of prostate-specific antigen in
serum improve the detection of prostate cancer. Clin Chemistry.
50:1017–1025. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Messina M, Kucuk O and Lampe JW: An
overview of the health effects of isoflavones with an emphasis on
prostate cancer risk and prostate-specific antigen levels. J AOAC
Int. 89:1121–1134. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tímár J: Molecular pathology of prostate
cancer. Magy Onkol. 63:5–9. 2019.(In Hu).
|
40
|
Xiao T, Zhong W, Zhao J, Qian B, Liu H,
Chen S, Qiao K, Lei Y, Zong S, Wang H, et al: Polyphyllin I
suppresses the formation of vasculogenic mimicry via
Twist1/VE-cadherin pathway. Cell Death Dis. 9:9062018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Majid S, Dar AA, Saini S, Shahryari V,
Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, et
al: miRNA-34b inhibits prostate cancer through demethylation,
active chromatin modifications, and AKT pathways. Clin Cancer Res.
19:73–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xu J, Wu W, Wang J, Huang C, Wen W, Zhao
F, Xu X, Pan X, Wang W, Zhu Q and Chen L: miR-367 promotes the
proliferation and invasion of non-small cell lung cancer via
targeting FBXW7. Oncol Rep. 37:1052–1058. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ding D, Zhang Y, Wen L, Fu J, Bai X, Fan
Y, Lin Y, Dai H, Li Q, Zhang Y and An R: miR-367 regulates cell
proliferation and metastasis by targeting metastasis-associated
protein 3 (MTA3) in clear-cell renal cell carcinoma. Oncotarget.
8:63084–63095. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bin Z, Dedong H, Xiangjie F, Hongwei X and
Qinghui Y: The microRNA-367 inhibits the invasion and metastasis of
gastric cancer by directly repressing Rab23. Genet Test Mol
Biomarkers. 19:69–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Xiao G, Gao X, Sun X, Yang C, Zhang B, Sun
R, Huang G, Li X, Liu J, Du N, et al: miR-367 promotes tumor growth
by inhibiting FBXW7 in NSCLC. Oncol Rep. 38:1190–1198. 2017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Liu Q, Tang H, Liu X, Liao Y, Li H, Zhao
Z, Yuan X and Jiang W: miR-200b as a prognostic factor targets
multiple members of RAB family in glioma. Med Oncol. 31:8592014.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Lin EH, Kao YR, Lin CA, Kuo TY, Yang SP,
Hsu CF, Chou TY, Ho CC and Wu CW: Hedgehog pathway maintains cell
survival under stress conditions, and drives drug resistance in
lung adenocarcinoma. Oncotarget. 7:24179–24193. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Harris LG, Pannell LK, Singh S, Samant RS
and Shevde LA: Increased vascularity and spontaneous metastasis of
breast cancer by hedgehog signaling mediated upregulation of cyr61.
Oncogene. 31:3370–3380. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Atwood SX, Li M, Lee A, Tang JY and Oro
AE: GLI activation by atypical protein kinase C ι/λ regulates the
growth of basal cell carcinomas. Nature. 494:484–488. 2013.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Dahmane N, Lee J, Robins P, Heller P and
Ruiz I Altaba A: Activation of the transcription factor Gli1 and
the Sonic hedgehog signalling pathway in skin tumours. Nature.
389:876–881. 1997. View
Article : Google Scholar : PubMed/NCBI
|
51
|
Kenney AM and Rowitch DH: Sonic hedgehog
promotes G(1) cyclin expression and sustained cell cycle
progression in mammalian neuronal precursors. Mol Cell Biol.
20:9055–9067. 2000. View Article : Google Scholar : PubMed/NCBI
|
52
|
Mullor JL, Dahmane N, Sun T and Ruiz I
Altaba A: Wnt signals are targets and mediators of Gli function.
Curr Biol. 11:769–773. 2001. View Article : Google Scholar : PubMed/NCBI
|
53
|
Teh MT, Wong ST, Neill GW, Ghali LR,
Philpott MP and Quinn AG: FOXM1 is a downstream target of Gli1 in
basal cell carcinomas. Cancer Res. 62:4773–4780. 2002.PubMed/NCBI
|
54
|
Kenney AM, Cole MD and Rowitch DH: Nmyc
upregulation by sonic hedgehog signaling promotes proliferation in
developing cerebellar granule neuron precursors. Development.
130:15–28. 2003. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ingram WJ, McCue KI, Tran TH, Hallahan AR
and Wainwright BJ: Sonic Hedgehog regulates Hes1 through a novel
mechanism that is independent of canonical Notch pathway
signalling. Oncogene. 27:1489–1500. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Leung C, Lingbeek M, Shakhova O, Liu J,
Tanger E, Saremaslani P, Van Lohuizen M and Marino S: Bmi1 is
essential for cerebellar development and is overexpressed in human
medulloblastomas. Nature. 428:337–341. 2004. View Article : Google Scholar : PubMed/NCBI
|
57
|
Clement V, Sanchez P, de Tribolet N,
Radovanovic I and Ruiz I Altaba A: HEDGEHOG-GLI1 signaling
regulates human glioma growth, cancer stem cell self-renewal, and
tumorigenicity. Curr Biol. 17:165–172. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Stecca B and Ruiz i Altaba A: A GLI1-p53
inhibitory loop controls neural stem cell and tumour cell numbers.
EMBO J. 28:663–676. 2009. View Article : Google Scholar : PubMed/NCBI
|
59
|
Li Y, Zhang H, Litingtung Y and Chiang C:
Cholesterol modification restricts the spread of Shh gradient in
the limb bud. Proc Natl Acad Sci USA. 103:6548–6553. 2006.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Ohta H, Aoyagi K, Fukaya M, Danjoh I, Ohta
A, Isohata N, Saeki N, Taniguchi H, Sakamoto H, Shimoda T, et al:
Cross talk between hedgehog and epithelial-mesenchymal transition
pathways in gastric pit cells and in diffuse-type gastric cancers.
Br J Cancer. 100:389–398. 2009. View Article : Google Scholar : PubMed/NCBI
|
61
|
Varnat F, Duquet A, Malerba M, Zbinden M,
Mas C, Gervaz P and Ruiz i Altaba A: Human colon cancer epithelial
cells harbour active HEDGEHOG-GLI signalling that is essential for
tumour growth, recurrence, metastasis and stem cell survival and
expansion. EMBO Mol Med. 1:338–351. 2009. View Article : Google Scholar : PubMed/NCBI
|