1
|
Wang S, Wu J, Ren J, Vlantis AC, Li MY,
Liu SYW, Ng EKW, Chan ABW, Luo DC, Liu Z, et al: MicroRNA-125b
interacts with Foxp3 to induce autophagy in thyroid cancer. Mol
Ther. 26:2295–2303. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yin D, Wu W, Li M, Wang QE, Li H, Wang Y,
Tang Y and Xing M: DKK3 is a potential tumor suppressor gene in
papillary thyroid carcinoma. Endocr Relat Cancer. 20:507–514. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Dalal V, Kaur M and Bansal A: Papillary
carcinoma thyroid with anastomosing channels: An unusual
morphology. J Lab Physicians. 9:140–142. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Schneider DF and Chen H: New developments
in the diagnosis and treatment of thyroid cancer. CA Cancer J Clin.
63:374–394. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kim DH, Ahn JS, Han HJ, Kim HM, Hwang J,
Lee KH, Cha-Molstad H, Ryoo IJ, Jang JH, Ko SK, et al: Cep131
overexpression promotes centrosome amplification and colon cancer
progression by regulating Plk4 stability. Cell Death Dis.
10:5702019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fukasawa K: Oncogenes and tumour
suppressors take on centrosomes. Nat Rev Cancer. 7:911–924. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Brinkley BR: Managing the centrosome
numbers game: From chaos to stability in cancer cell division.
Trends Cell Biol. 11:18–21. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Levine MS, Bakker B, Boeckx B, Moyett J,
Lu J, Vitre B, Spierings DC, Lansdorp PM, Cleveland DW, Lambrechts
D, et al: Centrosome amplification is sufficient to promote
spontaneous tumorigenesis in mammals. Dev Cell. 40:313–322.e5.
2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Coelho PA, Bury L, Shahbazi MN,
Liakath-Ali K, Tate PH, Wormald S, Hindley CJ, Huch M, Archer J,
Skarnes WC, et al: Over-expression of Plk4 induces centrosome
amplification, loss of primary cilia and associated tissue
hyperplasia in the mouse. Open Biol. 5:1502092015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Maric I, Viaggi S, Caria P, Frau DV, Degan
P and Vanni R: Centrosomal and mitotic abnormalities in cell lines
derived from papillary thyroid cancer harboring specific gene
alterations. Mol Cytogenet. 4:262011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pannu V, Mittal K, Cantuaria G, Reid MD,
Li X, Donthamsetty S, McBride M, Klimov S, Osan R, Gupta MV, et al:
Rampant centrosome amplification underlies more aggressive disease
course of triple negative breast cancers. Oncotarget.
6:10487–10497. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Denu RA, Zasadil LM, Kanugh C, Laffin J,
Weaver BA and Burkard ME: Centrosome amplification induces high
grade features and is prognostic of worse outcomes in breast
cancer. BMC Cancer. 16:472016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kawamura K, Izumi H, Ma Z, Ikeda R,
Moriyama M, Tanaka T, Nojima T, Levin LS, Fujikawa-Yamamoto K,
Suzuki K and Fukasawa K: Induction of centrosome amplification and
chromosome instability in human bladder cancer cells by p53
mutation and cyclin E overexpression. Cancer Res. 64:4800–4809.
2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xie S, Qin J, Liu S, Zhang Y, Wang J, Shi
X, Li D, Zhou J and Liu M: Cep70 overexpression stimulates
pancreatic cancer by inducing centrosome abnormality and
microtubule disorganization. Sci Rep. 6:212632016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li J, Xuan JW, Khatamianfar V, Valiyeva F,
Moussa M, Sadek A, Yang BB, Dong BJ, Huang YR and Gao WQ: SKA1
over-expression promotes centriole over-duplication, centrosome
amplification and prostate tumourigenesis. J Pathol. 234:178–189.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nigg EA, Cajanek L and Arquint C: The
centrosome duplication cycle in health and disease. FEBS Lett.
588:2366–2372. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Watanabe Y, Honda S, Konishi A, Arakawa S,
Murohashi M, Yamaguchi H, Torii S, Tanabe M, Tanaka S, Warabi E and
Shimizu S: Autophagy controls centrosome number by degrading Cep63.
Nat Commun. 7:135082016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Buim ME, Soares FA, Sarkis AS and Nagai
MA: The transcripts of SFRP1,CEP63 and EIF4G2 genes are frequently
downregulated in transitional cell carcinomas of the bladder.
Oncology. 69:445–454. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Smith E, Dejsuphong D, Balestrini A,
Hampel M, Lenz C, Takeda S, Vindigni A and Costanzo V: An ATM- and
ATR-dependent checkpoint inactivates spindle assembly by targeting
CEP63. Nat Cell Biol. 11:278–285. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Loffler H, Fechter A, Matuszewska M,
Saffrich R, Mistrik M, Marhold J, Hornung C, Westermann F, Bartek J
and Krämer A: Cep63 recruits Cdk1 to the centrosome: Implications
for regulation of mitotic entry, centrosome amplification, and
genome maintenance. Cancer Res. 71:2129–2139. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhi J, Wu Y, Hu L, Zhao J, Liu H, Ruan X,
Hou X, Zhang J, Zheng X and Gao M: Assessment of the prognostic
value and N1b changes of the eighth TNM/AJCC staging system for
differentiated thyroid carcinoma. Int J Clin Oncol. 25:59–66. 2020.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim TH, Kim YN, Kim HI, Park SY, Choe JH,
Kim JH, Kim JS, Oh YL, Hahn SY, Shin JH, et al: Prognostic value of
the eighth edition AJCC TNM classification for differentiated
thyroid carcinoma. Oral Oncol. 71:81–86. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li S, Hu X, Cui S and He D: Novel
centrosome protein, TCC52, is a cancer-testis antigen. Cancer Sci.
99:2274–2279. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kumar A, Rajendran V, Sethumadhavan R and
Purohit R: CEP proteins: The knights of centrosome dynasty.
Protoplasma. 250:965–983. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yin DT, Xu J, Lei M, Li H, Wang Y, Liu Z,
Zhou Y and Xing M: Characterization of the novel tumor-suppressor
gene CCDC67 in papillary thyroid carcinoma. Oncotarget.
7:5830–5841. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liang C, Zhao T, Li H, He F, Zhao X, Zhang
Y, Chu X, Hua C, Qu Y, Duan Y, et al: Long Non-coding RNA ITIH4-AS1
accelerates the proliferation and metastasis of colorectal cancer
by activating JAK/STAT3 signaling. Mol Ther Nucleic Acids.
18:183–193. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Khanna P, Lee JS, Sereemaspun A, Lee H and
Baeg GH: GRAMD1B regulates cell migration in breast cancer cells
through JAK/STAT and Akt signaling. Sci Rep. 8:95112018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yu H, Lee H, Herrmann A, Buettner R and
Jove R: Revisiting STAT3 signalling in cancer: New and unexpected
biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Notarangelo T, Sisinni L, Trino S, Calice
G, Simeon V and Landriscina M: IL6/STAT3 axis mediates resistance
to BRAF inhibitors in thyroid carcinoma cells. Cancer Lett.
433:147–155. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chang Q, Bournazou E, Sansone P, Berishaj
M, Gao SP, Daly L, Wels J, Theilen T, Granitto S, Zhang X, et al:
The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and
metastasis. Neoplasia. 15:848–862. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bi CL, Zhang YQ, Li B, Guo M and Fu YL:
MicroRNA-520a-3p suppresses epithelial-mesenchymal transition,
invasion, and migration of papillary thyroid carcinoma cells via
the JAK1-mediated JAK/STAT signaling pathway. J Cell Physiol.
234:4054–4067. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lu J, Zhang L, Zhou H, Du Z and Zhang G:
Silencing of Girdin suppresses the malignant behavior of colorectal
carcinoma cells. Oncol Rep. 40:887–894. 2018.PubMed/NCBI
|