1
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the
global cancer incidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Arbour KC and Riely GJ: Systemic therapy
for locally advanced and metastatic non-small cell lung cancer: A
review. JAMA. 322:764–774. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Miller KD, Nogueira L, Mariotto AB,
Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL and Siegel
RL: Cancer treatment and survivorship statistics, 2019. CA Cancer J
Clin. 69:363–385. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
National Lung Screening Trial Research
Team, . Lung Cancer Incidence and mortality with extended follow-up
in the National lung screening trial. J Thorac Oncol. 14:1732–1742.
2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Elmore LW, Greer SF, Daniels EC, Saxe CC,
Melner MH, Krawiec GM, Cance WG and Phelps WC: Blueprint for cancer
research: Critical gaps and opportunities. CA Cancer J Clin.
71:107–139. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Binnewies M, Roberts EW, Kersten K, Chan
V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI,
Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor
immune microenvironment (TIME) for effective therapy. Nat Med.
24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Duan Q, Zhang H, Zheng J and Zhang L:
Turning cold into hot: Firing up the tumor microenvironment. Trends
Cancer. 6:605–618. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vakal S, Jalkanen S, Dahlstrom KM and
Salminen TA: Human copper-containing amine oxidases in drug design
and development. Molecules. 25:12932020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mondovì B and Finazzi Agrò A: Structure
and function of amine oxidase. Adv Exp Med Biol. 148:141–153. 1982.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Buffoni F and Ignesti G: The
Copper-containing amine oxidases: Biochemical aspects and
functional role. Mol Genet Metab. 71:559–564. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Boomsma F, Bhaggoe UM, van der Houwen AM
and van den Meiracker AH: Plasma semicarbazide-sensitive amine
oxidase in human (patho)physiology. Biochim Biophys Acta.
1647:48–54. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Salmi M and Jalkanen S: Vascular adhesion
protein-1: A cell surface amine oxidase in translation. Antioxid
Redox Signal. 30:314–332. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu F, Xu Y, Xiong JH, Zhang JH, Wu J, Luo
J and Xiong JP: AOC1 Contributes to tumor progression by promoting
the AKT and EMT pathways in gastric cancer. Cancer Manag Res.
12:1789–1798. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lopes de Carvalho L, Bligt-Linden E,
Ramaiah A, Johnson MS and Salminen TA: Evolution and functional
classification of mammalian copper amine oxidases. Mol Phylogenet
Evol. 139:1065712019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Imamura Y, Kubota R, Wang Y, Asakawa S,
Kudoh J, Mashima Y, Oguchi Y and Shimizu N: Human retina-specific
amine oxidase (RAO): cDNA cloning, tissue expression, and
chromosomal mapping. Genomics. 40:277–283. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bonaiuto E, Lunelli M, Scarpa M, Vettor R,
Milan G and Di Paolo ML: A structure-activity study to identify
novel and efficient substrates of the human semicarbazide-sensitive
amine oxidase/VAP-1 enzyme. Biochimie. 92:858–868. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Salmi M and Jalkanen S: A 90-kilodalton
endothelial cell molecule mediating lymphocyte binding in humans.
Science. 257:1407–1409. 1992. View Article : Google Scholar : PubMed/NCBI
|
19
|
Stankovic B, Bjørhovde HAK, Skarshaug R,
Aamodt H, Frafjord A, Müller E, Hammarström C, Beraki K, Bækkevold
ES, Woldbæk PR, et al: Immune cell composition in human non-small
cell lung cancer. Front Immunol. 9:31012019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Oja AE, Piet B, van der Zwan D,
Blaauwgeers H, Mensink M, de Kivit S, Borst J, Nolte MA, van Lier
RAW, Stark R and Hombrink P: Functional heterogeneity of
CD4+ tumor-infiltrating lymphocytes with a resident
memory phenotype in NSCLC. Front Immunol. 9:26542018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rhodes DR, Yu J, Shanker K, Deshpande N,
Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM:
ONCOMINE: A cancer microarray database and integrated data-mining
platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ,
Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH and Huang CY:
Selection of DDX5 as a novel internal control for Q-RT-PCR from
microarray data using a block bootstrap re-sampling scheme. BMC
Genomics. 8:1402007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Okayama H, Kohno T, Ishii Y, Shimada Y,
Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S,
et al: Identification of genes upregulated in ALK-positive and
EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res.
72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Landi MT, Dracheva T, Rotunno M, Figueroa
JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, et
al: Gene expression signature of cigarette smoking and its role in
lung adenocarcinoma development and survival. PLoS One.
3:e16512008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Beer DG, Kardia SL, Huang CC, Giordano TJ,
Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, et al:
Gene-expression profiles predict survival of patients with lung
adenocarcinoma. Nat Med. 8:816–824. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Stearman RS, Dwyer-Nield L, Zerbe L,
Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT,
Franklin WA, et al: Analysis of orthologous gene expression between
human pulmonary adenocarcinoma and a carcinogen-induced murine
model. Am J Pathol. 167:1763–1775. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Selamat SA, Chung BS, Girard L, Zhang W,
Zhang Y, Campan M, Siegmund KD, Koss MN, Hagen JA, Lam WL, et al:
Genome-scale analysis of DNA methylation in lung adenocarcinoma and
integration with mRNA expression. Genome Res. 22:1197–1211. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Garber ME, Troyanskaya OG, Schluens K,
Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen
GD, Perou CM, Whyte RI, et al: Diversity of gene expression in
adenocarcinoma of the lung. Proc Natl Acad Sci USA. 98:13784–13789.
2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hou J, Aerts J, den Hamer B, van Ijcken W,
den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens
JA, Hoogsteden HC, et al: Gene expression-based classification of
non-small cell lung carcinomas and survival prediction. PLoS One.
5:e103122010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wachi S, Yoneda K and Wu R:
Interactome-transcriptome analysis reveals the high centrality of
genes differentially expressed in lung cancer tissues.
Bioinformatics. 21:4205–4208. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bhattacharjee A, Richards WG, Staunton J,
Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et
al: Classification of human lung carcinomas by mRNA expression
profiling reveals distinct adenocarcinoma subclasses. Proc Natl
Acad Sci USA. 98:13790–13795. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Uhlen M, Zhang C, Lee S, Sjöstedt E,
Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et
al: A pathology atlas of the human cancer transcriptome. Science.
357:eaan25072017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gyorffy B, Surowiak P, Budczies J and
Lanczky A: Online survival analysis software to assess the
prognostic value of biomarkers using transcriptomic data in
non-small-cell lung cancer. PLoS One. 8:e822412013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mende DR, Letunic I, Maistrenko OM,
Schmidt TS, Milanese A, Paoli L, Hernández-Plaza A, Orakov AN,
Forslund SK, Sunagawa S, et al: proGenomes2: An improved database
for accurate and consistent habitat, taxonomic and functional
annotations of prokaryotic genomes. Nucleic Acids Res.
48:D621–D625. 2020.PubMed/NCBI
|
36
|
Sticht C, De La Torre C, Parveen A and
Gretz N: miRWalk: An online resource for prediction of microRNA
binding sites. PLoS One. 13:e02062392018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Enright AJ, John B, Gaul U, Tuschl T,
Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol.
5:R12003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen Y and Wang X: miRDB: An online
database for prediction of functional microRNA targets. Nucleic
Acids Res. 48:D127–D131. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ke HL, Li WM, Lin HH, Hsu WC, Hsu YL,
Chang LL, Huang CN, Li CC, Chang HP, Yeh HC, et al:
Hypoxia-regulated MicroRNA-210 overexpression is associated with
tumor development and progression in upper tract urothelial
carcinoma. Int J Med Sci. 14:578–584. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Shao L, Li H, Chen J, Song H, Zhang Y, Wu
F, Wang W, Zhang W, Wang F, Li H and Tang D: Irisin suppresses the
migration, proliferation, and invasion of lung cancer cells via
inhibition of epithelial-to-mesenchymal transition. Biochem Biophys
Res Commun. 485:598–605. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ward ST, Weston CJ, Shepherd EL, Hejmadi
R, Ismail T and Adams DH: Evaluation of serum and tissue levels of
VAP-1 in colorectal cancer. BMC Cancer. 16:1542016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sun WY, Choi J, Cha YJ and Koo JS:
Evaluation of the expression of amine oxidase proteins in breast
cancer. Int J Mol Sci. 18:27752017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kostoro J, Chang SJ, Clark Lai YC, Wu CC,
Chai CY and Kwan AL: Overexpression of vascular adhesion protein-1
is associated with poor prognosis of astrocytomas. APMIS.
124:462–468. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chang SJ, Tu HP, Lai YCC, Luo CW, Nejo T,
Tanaka S, Chai CY and Kwan AL: Increased vascular adhesion protein
1 (VAP-1) levels are associated with alternative M2 macrophage
activation and poor prognosis for human gliomas. Diagnostics
(Basel). 10:2562020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yasuda H, Toiyama Y, Ohi M, Mohri Y, Miki
C and Kusunoki M: Serum soluble vascular adhesion protein-1 is a
valuable prognostic marker in gastric cancer. J Surg Oncol.
103:695–699. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Toiyama Y, Miki C, Inoue Y, Kawamoto A and
Kusunoki M: Circulating form of human vascular adhesion protein-1
(VAP-1): Decreased serum levels in progression of colorectal cancer
and predictive marker of lymphatic and hepatic metastasis. J Surg
Oncol. 99:368–372. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Du W, Zhang X and Wan Z: miR-3691-5p
promotes hepatocellular carcinoma cell migration and invasion
through activating PI3K/Akt signaling by targeting PTEN. Onco
Targets Ther. 12:4897–4906. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Leggett SE, Hruska AM, Guo M and Wong IY:
The epithelial-mesenchymal transition and the cytoskeleton in
bioengineered systems. Cell Commun Signal. 19:322021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Dunkel J, Aguilar-Pimentel JA, Ollert M,
Fuchs H, Gailus-Durner V, de Angelis MH, Jalkanen S, Salmi M and
Veres TZ: Endothelial amine oxidase AOC3 transiently contributes to
adaptive immune responses in the airways. Eur J Immunol.
44:3232–3239. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Irjala H, Salmi M, Alanen K, Grénman R and
Jalkanen S: Vascular adhesion protein 1 mediates binding of
immunotherapeutic effector cells to tumor endothelium. J Immunol.
166:6937–6943. 2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Stolen CM, Marttila-Ichihara F, Koskinen
K, Yegutkin GG, Turja R, Bono P, Skurnik M, Hänninen A, Jalkanen S
and Salmi M: Absence of the endothelial oxidase AOC3 leads to
abnormal leukocyte traffic in vivo. Immunity. 22:105–115. 2005.
View Article : Google Scholar : PubMed/NCBI
|