1
|
Torre LA, Siegel RL, Ward EM and Jemal A:
Global cancer incidence and mortality rates and trends-an update.
Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ritch C and Cookson M: Recent trends in
the management of advanced prostate cancer. F1000Res. 7:15132018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Dai C, Heemers H and Sharifi N: Androgen
signaling in prostate cancer. Cold Spring Harb Perspect Med.
7:a0304522017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Teo MY, Rathkopf DE and Kantoff P:
Treatment of advanced prostate cancer. Annu Rev Med. 70:479–499.
2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bastos D and Antonarakis E: CTC-derived
AR-V7 detection as a prognostic and predictive biomarker in
advanced prostate cancer. Expert Rev Mol Diagn. 18:155–163. 2018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Shorning BY, Dass MS, Smalley MJ and
Pearson HB: The PI3K-AKT-mTOR pathway and prostate cancer: At the
crossroads of AR, MAPK, and WNT signaling. Int J Mol Sci.
21:45072020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Edlind MP and Hsieh AC: PI3K-AKT-mTOR
signaling in prostate cancer progression and androgen deprivation
therapy resistance. Asian J Androl. 16:378–386. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lee SH, Johnson D, Luong R and Sun Z:
Crosstalking between androgen and PI3K/AKT signaling pathways in
prostate cancer cells. J Biol Chem. 290:2759–2768. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang K, Ruan H, Xu T, Liu L, Liu D, Yang
H, Zhang X and Chen K: Recent advances on the progressive mechanism
and therapy in castration-resistant prostate cancer. Onco Targets
Ther. 11:3167–3178. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rafiei S, Gui B, Wu J, Liu XS, Kibel AS
and Jia L: Targeting the MIF/CXCR7/AKT signaling pathway in
castration-resistant prostate cancer. Mol Cancer Res. 17:263–276.
2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
He Y, Yu D, Zhu L, Zhong S, Zhao J and
Tang J: miR-149 in human cancer: A systemic review. J Cancer.
9:375–388. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xie Z, Xu J, Peng L, Gao Y, Zhao H and Qu
Y: miR-149 promotes human osteocarcinoma progression via targeting
bone morphogenetic protein 9 (BMP9). Biotechnol Lett. 40:47–55.
2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li Y, Ju K, Wang W, Liu Z, Xie H, Jiang Y,
Jiang G, Lu J, Dong Z and Tang F: Dinitrosopiperazine-decreased
PKP3 through upregulating miR-149 participates in nasopharyngeal
carcinoma metastasis. Mol Carcinog. 57:1763–1779. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ma J, Wei H, Li X and Qu X: hsa-miR-149-5p
suppresses prostate carcinoma malignancy by suppressing RGS17.
Cancer Manag Res. 13:2773–2783. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang C, Ding T, Yang D, Zhang P, Hu X, Qin
W and Zheng J: The lncRNA OGFRP1/miR-149-5p/IL-6 axis regulates
prostate cancer chemoresistance. Pathol Res Pract. 224:1535352021.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Fujii T, Shimada K, Tatsumi Y, Fujimoto K
and Konishi N: Syndecan-1 responsive microRNA-126 and 149 regulate
cell proliferation in prostate cancer. Biochem Biophys Res Commun.
456:183–189. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen Y, Zhao J, Luo Y, Wang Y and Jiang Y:
Downregulated expression of miRNA-149 promotes apoptosis in side
population cells sorted from the TSU prostate cancer cell line.
Oncol Rep. 36:2587–2600. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu HC, Hsieh JT, Gleave ME, Brown NM,
Pathak S and Chung LW: Derivation of androgen-independent human
LNCaP prostatic cancer cell sublines: Role of bone stromal cells.
Int J Cancer. 57:406–412. 1994. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Odero-Marah V, Hawsawi O, Henderson V and
Sweeney J: Epithelial-mesenchymal transition (EMT) and prostate
cancer. Adv Exp Med Biol. 1095:101–110. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhi Y, Zhou H, Mubalake A, Chen Y, Zhang
B, Zhang K, Chu X and Wang R: Regulation and functions of
MicroRNA-149 in human cancers. Cell Prolif. 51:e124652018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y, Guo X, Xiong L, Yu L, Li Z, Guo
Q, Li Z, Li B and Lin N: Comprehensive analysis of
microRNA-regulated protein interaction network reveals the tumor
suppressive role of microRNA-149 in human hepatocellular carcinoma
via targeting AKT-mTOR pathway. Mol Cancer. 13:2532014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fogli S, Polini B, Carpi S, Pardini B,
Naccarati A, Dubbini N, Lanza M, Breschi MC, Romanini A and Nieri
P: Identification of plasma microRNAs as new potential biomarkers
with high diagnostic power in human cutaneous melanoma. Tumour
Biol. 39:10104283177016462017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Montanari M, Rossetti S, Cavaliere C,
D'Aniello C, Malzone MG, Vanacore D, Di Franco R, La Mantia E,
Iovane G, Piscitelli R, et al: Epithelial-mesenchymal transition in
prostate cancer: An overview. Oncotarget. 8:35376–35389. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen H, Zhou L, Wu X, Li R, Wen J, Sha J
and Wen X: The PI3K/AKT pathway in the pathogenesis of prostate
cancer. Front Biosci (Landmark Ed). 21:1084–1091. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nóbrega M, Cilião HL, Souza MF, Souza MR,
Serpeloni JM, Fuganti PE and Cólus IMS: Association of
polymorphisms of PTEN, AKT1, PI3K, AR, and AMACR genes in patients
with prostate cancer. Genet Mol Biol. 43:e201803292020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hu M, Zhu S, Xiong S, Xue X and Zhou X:
MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review).
Oncol Rep. 41:1439–1454. 2019.PubMed/NCBI
|
28
|
Ghafouri-Fard S, Shoorei H and Taheri M:
miRNA profile in ovarian cancer. Exp Mol Pathol. 113:1043812020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Wise HM, Hermida MA and Leslie NR:
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond).
131:197–210. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen J, Xu Y, Tao L, Pan Y, Zhang K, Wang
R, Chen LB and Chu X: miRNA-26a contributes to the acquisition of
malignant behaviors of doctaxel-resistant lung adenocarcinoma cells
through targeting EZH2. Cell Physiol Biochem. 41:583–597. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Niu Y, Tang G, Wu X and Wu C: LncRNA NEAT1
modulates sorafenib resistance in hepatocellular carcinoma through
regulating the miR-149-5p/AKT1 axis. Saudi J Gastroenterol.
26:194–203. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pan SJ, Zhan SK, Pei BG, Sun QF, Bian LG
and Sun BM: MicroRNA-149 inhibits proliferation and invasion of
glioma cells via blockade of AKT1 signaling. Int J Immunopathol
Pharmacol. 25:871–881. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
De Nunzio C, Presicce F, Giacinti S,
Bassanelli M and Tubaro A: Castration-resistance prostate cancer:
What is in the pipeline? Minerva Urol Nefrol. 70:22–41.
2018.PubMed/NCBI
|
34
|
Galletti G, Leach BI, Lam L and Tagawa ST:
Mechanisms of resistance to systemic therapy in metastatic
castration-resistant prostate cancer. Cancer Treat Rev. 57:16–27.
2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
James ND, de Bono JS, Spears MR, Clarke
NW, Mason MD, Dearnaley DP, Ritchie AWS, Amos CL, Gilson C, Jones
RJ, et al: Abiraterone for prostate cancer not previously treated
with hormone therapy. N Engl J Med. 377:338–351. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yan Y and Huang H: Interplay among
PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv Exp
Med Biol. 1210:319–331. 2019. View Article : Google Scholar : PubMed/NCBI
|