Role of MRI‑based radiomics in locally advanced rectal cancer (Review)
- Authors:
- Siyu Zhang
- Mingrong Yu
- Dan Chen
- Peidong Li
- Bin Tang
- Jie Li
-
Affiliations: School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China, College of Physical Education, Sichuan Agricultural University, Ya'an, Sichuan 625000, P.R. China, Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, P.R. China - Published online on: December 21, 2021 https://doi.org/10.3892/or.2021.8245
- Article Number: 34
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gabriel E, Ostapoff K, Attwood K, Al-Sukhni E, Boland P and Nurkin S: Disparities in the age-related rates of colorectal cancer in the United States. Am Surg. 83:640–647. 2017. View Article : Google Scholar : PubMed/NCBI | |
Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A and Arnold D; ESMO Guidelines Committee, : Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 28 (Suppl_4):iv22–iv40. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O and Bray F: Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 103:356–387. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bigness A, Imanirad I, Sahin IH, Xie H, Frakes J, Hoffe S, Laskowitz D and Felder S: Locally advanced rectal adenocarcinoma: Treatment sequences, intensification, and rectal organ preservation. CA Cancer J Clin. 71:198–208. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Huang R, Guo S, Zhang X, Xi S, Wang Q, Chang H, Wang X, Xiao W, Zeng Z and Gao Y: ypTNM category combined with AJCC tumor regression grade for screening patients with the worst prognosis after neoadjuvant chemoradiation therapy for locally advanced rectal cancer. Cancer Manag Res. 10:5219–5225. 2018. View Article : Google Scholar : PubMed/NCBI | |
Edge SB and Compton CC: The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cercek A, Roxburgh CSD, Strombom P, Smith JJ, Temple LKF, Nash GM, Guillem JG, Paty PB, Yaeger R, Stadler ZK, et al: Adoption of total neoadjuvant therapy for locally advanced rectal cancer. JAMA Oncol. 4:e1800712018. View Article : Google Scholar : PubMed/NCBI | |
Conroy T, Bosset JF, Etienne PL, Rio E, François É, Mesgouez-Nebout N, Vendrely V, Artignan X, Bouché O, Gargot D, et al: Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 22:702–715. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang J, Ma XW, Tan L, Yan Y, Xue C, Hui B, Liu R, Ma H and Ren J: A Review of neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Int J Biol Sci. 12:1022–1031. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B and Starling N: Colorectal cancer. Lancet. 375:1030–1047. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roh MS, Colangelo LH, O'Connell MJ, Yothers G, Deutsch M, Allegra CJ, Kahlenberg MS, Baez-Diaz L, Ursiny CS, Petrelli NJ and Wolmark N: Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol. 27:5124–5130. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Adam MA, Kim J, Turner MC, Fisher DA, Choudhury KR, Czito BG, Migaly J and Mantyh CR: Association between neoadjuvant chemoradiation and survival for patients with locally advanced rectal cancer. Colorectal Dis. 19:1058–1066. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park IJ, You YN, Agarwal A, Skibber JM, Rodriguez-Bigas MA, Eng C, Feig BW, Das P, Krishnan S, Crane CH, et al: Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J Clin Oncol. 30:1770–1776. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ravenda P, Gregato G, Rotundo M, Frassoni S, Dell'Acqua V, Trovato C, Petz W, Rafaniello Raviele P, Bagnardi V, Bertolini F, et al: Predictive value of circulating tumor-derived DNA (ctDNA) in patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (CT-RT): Preliminary results. Ann Oncol. 29:V852018. View Article : Google Scholar | |
do Canto LM, Barros-Filho MC, Rainho CA, Marinho D, Kupper BEC, Begnami MDFS, Scapulatempo-Neto C, Havelund BM, Lindebjerg J, Marchi FA, et al: Comprehensive Analysis of DNA methylation and prediction of response to Neoadjuvanttherapy in locally advanced rectal cancer. Cancers (Basel). 12:30792020. View Article : Google Scholar : PubMed/NCBI | |
Timudom K, Akaraviputh T, Chinswangwatanakul V, Pongpaibul A, Korpraphong P, Petsuksiri J, Ithimakin S and Trakarnsanga A: Predictive significance of cancer related-inflammatory markers in locally advanced rectal cancer. World J Gastrointest Surg. 12:390–396. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vuijk FA, van de Water C, Lent-van Vliet S, van der Valk MJM, Simmer F, van de Velde CJH, Vahrmeijer AL, Nagtegaal ID and Hilling DE: Intra-Tumoral genomic heterogeneity in rectal cancer: Mutational status is dependent on preoperative biopsy depth and location. Cancers (Basel). 13:22712021. View Article : Google Scholar : PubMed/NCBI | |
Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ and Goh V: Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging. 3:573–589. 2012. View Article : Google Scholar : PubMed/NCBI | |
Greenbaum A, Martin DR, Bocklage T, Lee JH, Ness SA and Rajput A: Tumor heterogeneity as a predictor of response to neoadjuvant chemotherapy in locally advanced rectal cancer. Clin Colorectal Cancer. 18:102–109. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bundschuh RA, Dinges J, Neumann L, Seyfried M, Zsótér N, Papp L, Rosenberg R, Becker K, Astner ST, Henninger M, et al: Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med. 55:891–897. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A and Aerts HJ: Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 48:441–446. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 5:40062014. View Article : Google Scholar : PubMed/NCBI | |
Gillies RJ, Kinahan PE and Hricak H: Radiomics: Images are more than pictures, they are data. Radiology. 278:563–577. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kiessling F: The changing face of cancer diagnosis: From computational image analysis to systems biology. Eur Radiol. 28:3160–3164. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, et al: Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 14:749–762. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, et al: Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 69:127–157. 2019.PubMed/NCBI | |
Larue RT, Defraene G, De Ruysscher D, Lambin P and van Elmpt W: Quantitative radiomics studies for tissue characterization: A review of technology and methodological procedures. Br J Radiol. 90:201606652017. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Cheng Z, Huang Y, He L, Chen X, Ma Z, Huang X, Liang C and Liu Z: An MRI-based radiomics classifier for preoperative prediction of Ki-67 status in breast cancer. Acad Radiol. 25:1111–1117. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bulens P, Couwenberg A, Intven M, Debucquoy A, Vandecaveye V, Van Cutsem E, D'Hoore A, Wolthuis A, Mukherjee P, Gevaert O and Haustermans K: Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics. Radiother Oncol. 142:246–252. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Shen L, Wang Y, Wang J, Zhang H, Xia F, Wan J and Zhang Z: MRI Radiomics signature as a potential biomarker for predicting KRAS status in locally advanced rectal cancer patients. Front Oncol. 11:6140522021. View Article : Google Scholar : PubMed/NCBI | |
Petresc B, Lebovici A, Caraiani C, Feier DS, Graur F and Buruian MM: Pre-treatment T2-WI based radiomics features for prediction of locally advanced rectal cancer non-response to Neoadjuvant chemoradiotherapy: A preliminary study. Cancers (Basel). 12:18942020. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Xia T, Zhang M, Xia N, Liu J and Yang Y: Radiomics in stroke neuroimaging: Techniques, applications, and challenges. Aging Dis. 12:143–154. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fornacon-Wood I, Faivre-Finn C, O'Connor JPB and Price GJ: Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype. Lung Cancer. 146:197–208. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gardin I, Gregoire V, Gibon D, Kirisli H, Pasquier D, Thariat J and Vera P: Radiomics: Principles and radiotherapy applications. Crit Rev Oncol Hematol. 138:44–50. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bogowicz M, Vuong D, Huellner MW, Pavic M, Andratschke N, Gabrys HS, Guckenberger M and Tanadini-Lang S: CT radiomics and PET radiomics: Ready for clinical implementation? Q J Nucl Med Mol Imaging. 63:355–370. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hood L and Friend SH: Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 8:184–187. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pickhardt PJ: Recent developments in colorectal imaging. Curr Opin Gastroenterol. 31:76–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rutegard MK, Batsman M, Axelsson J, Brynolfsson P, Brännström F, Rutegård J, Ljuslinder I, Blomqvist L, Palmqvist R, Rutegård M and Riklund K: PET/MRI and PET/CT hybrid imaging of rectal cancer-description and initial observations from the RECTOPET (REctal Cancer trial on PET/MRI/CT) study. Cancer Imaging. 19:522019. View Article : Google Scholar : PubMed/NCBI | |
Raman SP, Chen Y and Fishman EK: Evolution of imaging in rectal cancer: Multimodality imaging with MDCT, MRI, and PET. J Gastrointest Oncol. 6:172–184. 2015.PubMed/NCBI | |
Gal O, Feldman D, Mari A, Baker FA, Hebron D and Kopelman Y: Computerized tomography criteria as a tool for simplifying the assessment of locally advanced rectal cancer. J Gastrointest Cancer. 51:130–134. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rymer B, Curtis NJ, Siddiqui MR and Chand M: FDG PET/CT can assess the response of locally advanced rectal cancer to Neoadjuvant chemoradiotherapy: Evidence from meta-analysis and systematic review. Clin Nucl Med. 41:371–375. 2016. View Article : Google Scholar : PubMed/NCBI | |
Avallone A, Aloj L, Pecori B, Caracò C, De Stefano A, Tatangelo F, Silvestro L, Granata V, Bianco F, Romano C, et al: 18F-FDG PET/CT is an early predictor of pathologic tumor response and survival after preoperative radiochemotherapy with bevacizumab in high-risk locally advanced rectal cancer. J Nucl Med. 60:1560–1568. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schmidt G: Importance of whole body MRI for staging of colorectal cancer. Radiologe. 52:537–544. 2012.(In German). View Article : Google Scholar : PubMed/NCBI | |
Georgiou PA, Tekkis PP, Constantinides VA, Patel U, Goldin RD, Darzi AW, John Nicholls R and Brown G: Diagnostic accuracy and value of magnetic resonance imaging (MRI) in planning exenterative pelvic surgery for advanced colorectal cancer. Eur J Cancer. 49:72–81. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jhaveri KS and Hosseini-Nik H: MRI of rectal cancer: An overview and update on recent advances. AJR Am J Roentgenol. 205:W42–W55. 2015. View Article : Google Scholar : PubMed/NCBI | |
Klessen C, Rogalla P and Taupitz M: Local staging of rectal cancer: The current role of MRI. Eur Radiol. 17:379–389. 2007. View Article : Google Scholar : PubMed/NCBI | |
Attenberger UI, Pilz LR, Morelli JN, Hausmann D, Doyon F, Hofheinz R, Kienle P, Post S, Michaely HJ, Schoenberg SO and Dinter DJ: Multi-parametric MRI of rectal cancer-do quantitative functional MR measurements correlate with radiologic and pathologic tumor stages? Eur J Radiol. 83:1036–1043. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Xu Y, Sun H, Jiang T, Xie S, Ooi BY and Ding Y: MRI evaluation of complete response of locally advanced rectal cancer after Neoadjuvant therapy: Current status and future trends. Cancer Manag Res. 13:4317–4328. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Pei Q, Zhang Y, Zhu H, Wang Z, Chen C, Li Q, Long X, Tan F, Zhou Z, et al: MRI-Based radiomics predicts tumor response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front Oncol. 9:5522019. View Article : Google Scholar : PubMed/NCBI | |
Mirbagheri N, Kumar B, Deb S, Poh BR, Dark JG, Leow CC and Teoh WM: Lymph node status as a prognostic indicator after preoperative Neoadjuvant chemoradiotherapy of rectal cancer. Colorectal Dis. 16:O339–O346. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cai C, Hu T, Gong J, Huang D, Liu F, Fu C and Tong T: Multiparametric MRI-based radiomics signature for preoperative estimation of tumor-stroma ratio in rectal cancer. Eur Radiol. 31:3326–3335. 2021. View Article : Google Scholar : PubMed/NCBI | |
De Cecco CN, Ganeshan B, Ciolina M, Rengo M, Meinel FG, Musio D, De Felice F, Raffetto N, Tombolini V and Laghi A: Texture analysis as imaging biomarker of tumoral response to Neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol. 50:239–245. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Yang W, Ren J, Li D, Du X, Zhang J and Yang X: Prognostic value of multiparametric MRI-based radiomics model: Potential role for chemotherapeutic benefits in locally advanced rectal cancer. Radiother Oncol. 154:161–169. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH, Wiggers T, Rutten HJ, Pahlman L, Glimelius B, van Krieken JH, et al: Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 345:638–646. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chetty R, Gill P, Govender D, Bateman A, Chang HJ, Deshpande V, Driman D, Gomez M, Greywoode G, Jaynes E, et al: International study group on rectal cancer regression grading: Interobserver variability with commonly used regression grading systems. Hum Pathol. 43:1917–1923. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bahadoer RR, Dijkstra EA, van Etten B, Marijnen CAM, Putter H, Kranenbarg EM, Roodvoets AGH, Nagtegaal ID, Beets-Tan RGH, Blomqvist LK, et al: Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol. 22:29–42. 2021. View Article : Google Scholar : PubMed/NCBI | |
Smith JJ, Strombom P, Chow OS, Roxburgh CS, Lynn P, Eaton A, Widmar M, Ganesh K, Yaeger R, Cercek A, et al: Assessment of a watch-and-wait strategy for rectal cancer in patients with a complete response after Neoadjuvant therapy. JAMA Oncol. 5:e1858962019. View Article : Google Scholar : PubMed/NCBI | |
Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo LJ, Calvo FA, García-Aguilar J, Glynne-Jones R, Haustermans K, et al: Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: A pooled analysis of individual patient data. Lancet Oncol. 11:835–844. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dinapoli N, Barbaro B, Gatta R, Chiloiro G, Casà C, Masciocchi C, Damiani A, Boldrini L, Gambacorta MA, Dezio M, et al: Magnetic resonance, vendor-independent, intensity histogram analysis predicting pathologic complete response after radiochemotherapy of rectal cancer. Int J Radiat Oncol Biol Phys. 102:765–774. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu W, Pei Q, Zhao L, Güngör C, Zhu H, Song X, Li C, Zhou Z, Xu Y, et al: Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Cancer Med. 8:7244–7252. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Yi Y, Liu Z, Cao W, Lai B, Sun K, Li L, Zhou Z, Feng Y and Tian J: Radiomics-Based pretherapeutic prediction of non-response to Neoadjuvant therapy in locally advanced rectal cancer. Ann Surg Oncol. 26:1676–1684. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Wu X, Lin H, Lu X, Huang Y and Chi P: Lymph node regression to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: Prognostic implication and a predictive model. J Gastrointest Surg. 25:1019–1028. 2021. View Article : Google Scholar : PubMed/NCBI | |
Okada K, Sadahiro S, Suzuki T, Tanaka A, Saito G, Kamijo A, Akiba T and Kawada S: Effects of chemoradiotherapy on lymph nodes in patients with rectal adenocarcinoma: Evaluation of numbers and sizes of retrieved lymph nodes inside and outside the radiation field. Anticancer Res. 34:4195–4200. 2014.PubMed/NCBI | |
Lee SH, Lee JL, Kim CW, Lee HI, Yu CS and Kim JC: Oncologic significance of para-aortic lymph node and inferior mesenteric lymph node metastasis in sigmoid and rectal adenocarcinoma. Eur J Surg Oncol. 43:2076–2083. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang J, Hur H, Min BS, Kim NK and Lee KY: Prognostic impact of inferior mesenteric artery lymph node metastasis in colorectal cancer. Ann Surg Oncol. 18:704–710. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mei SW, Liu Z, Wang Z, Pei W, Wei FZ, Chen JN, Wang ZJ, Shen HY, Li J, Zhao FQ, et al: Impact factors of lymph node retrieval on survival in locally advanced rectal cancer with neoadjuvant therapy. World J Clin Cases. 8:6229–6242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sartori CA, Sartori A, Vigna S, Occhipinti R and Baiocchi GL: Urinary and sexual disorders after laparoscopic TME for rectal cancer in males. J Gastrointest Surg. 15:637–643. 2011. View Article : Google Scholar : PubMed/NCBI | |
Herzog T, Belyaev O, Chromik AM, Weyhe D, Mueller CA, Munding J, Tannapfel A, Uhl W and Seelig MH: TME quality in rectal cancer surgery. Eur J Med Res. 15:292–296. 2010. View Article : Google Scholar : PubMed/NCBI | |
Veenhof AA, Brosens R, Engel AF, van der Peet DL and Cuesta MA: Risk factors and management of presacral abscess following total mesorectal excision for rectal cancer. Dig Surg. 26:317–321. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yuval JB, Thompson HM and Garcia-Aguilar J: Organ preservation in rectal cancer. J Gastrointest Surg. 24:1880–1888. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Yi Y, Liu Z, Zhou Z, Lai B, Sun K, Li L, Huang L, Feng Y, Cao W and Tian J: Radiomics-based preoperative prediction of lymph node status following neoadjuvant therapy in locally advanced rectal cancer. Front Oncol. 10:6042020. View Article : Google Scholar : PubMed/NCBI | |
Marijnen CA: Organ preservation in rectal cancer: Have all questions been answered? Lancet Oncol. 16:e13–e22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Langman G, Patel A and Bowley DM: Size and distribution of lymph nodes in rectal cancer resection specimens. Dis Colon Rectum. 58:406–414. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Pu H, Chen GW, Chen XL, Liu YS, Liu H, Wang K and Li H: Diffusion-weighted MR volume and apparent diffusion coefficient for discriminating lymph node metastases and good response after chemoradiation therapy in locally advanced rectal cancer. Eur Radiol. 31:200–211. 2021. View Article : Google Scholar : PubMed/NCBI | |
Newton AD, Li J, Jeganathan AN, Mahmoud NN, Epstein AJ and Paulson EC: A nomogram to predict lymph node positivity following Neoadjuvant chemoradiation in locally advanced rectal cancer. Dis Colon Rectum. 59:710–717. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song L and Yin J: Application of texture analysis based on sagittal fat-suppression and oblique axial T2-Weighted magnetic resonance imaging to identify lymph node invasion status of rectal cancer. Front Oncol. 10:13642020. View Article : Google Scholar : PubMed/NCBI | |
Lievre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, et al: KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 26:374–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA and Karapetis CS: Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: A meta-analysis of randomized, controlled trials. Ann Oncol. 26:13–21. 2015. View Article : Google Scholar : PubMed/NCBI | |
George B and Kopetz S: Predictive and prognostic markers in colorectal cancer. Curr Oncol Rep. 13:206–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dai D, Wang Y, Zhu L, Jin H and Wang X: Prognostic value of KRAS mutation status in colorectal cancer patients: A population-based competing risk analysis. Peerj. 8:e91492020. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Goffredo P, Ginader T, Thompson D, Hrabe J, Gribovskaja-Rupp I, Kapadia M and Hassan I: Impact of KRAS status on tumor response and survival after Neoadjuvant treatment of locally advanced rectal cancer. J Surg Oncol. 123:278–285. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gupta AK, Bakanauskas VJ, Cerniglia GJ, Cheng Y, Bernhard EJ, Muschel RJ and McKenna WG: The Ras radiation resistance pathway. Cancer Res. 61:4278–4282. 2001.PubMed/NCBI | |
Toulany M, Dittmann K, Kruger M, Baumann M and Rodemann HP: Radioresistance of K-Ras mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-AKT pathway. Radiother Oncol. 76:143–150. 2005. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Lin J, Qiu M, Zhao Y, Deng Y, Shao J, Ding P, Zhang H, Wan D, Lu Z and Pan Z: Oncogene mutation profile predicts tumor regression and survival in locally advanced rectal cancer patients treated with preoperative chemoradiotherapy and radical surgery. Tumour Biol. 39:10104283177096382017. View Article : Google Scholar : PubMed/NCBI | |
Coppede F, Lopomo A, Spisni R and Migliore L: Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol. 20:943–956. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Xu Q, Sun H, Liu T, Shi K and Wang W: Could IVIM and ADC help in predicting the KRAS status in patients with rectal cancer? Eur Radiol. 28:3059–3065. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yeo DM, Oh SN, Choi MH, Lee SH, Lee MA and Jung SE: Histogram analysis of perfusion parameters from dynamic contrast-enhanced MR imaging with tumor characteristics and therapeutic response in locally advanced rectal cancer. Biomed Resm Int. 2018:37243932018.PubMed/NCBI | |
Meng X, Xia W, Xie P, Zhang R, Li W, Wang M, Xiong F, Liu Y, Fan X, Xie Y, et al: Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer. Eur Radiol. 29:3200–3209. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Xu Q, Ma Y, Duan J, Zhang H, Liu T, Li L, Sun H, Shi K, Xie S and Wang W: Characterizing MRI features of rectal cancers with different KRAS status. BMC Cancer. 19:11112019. View Article : Google Scholar : PubMed/NCBI | |
Oh JE, Kim MJ, Lee J, Hur BY, Kim B, Kim DY, Baek JY, Chang HJ, Park SC, Oh JH, et al: Magnetic resonance-based texture analysis differentiating KRAS mutation status in rectal cancer. Cancer Res Treat. 52:51–59. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chiloiro G, Rodriguez-Carnero P, Lenkowicz J, Casà C, Masciocchi C, Boldrini L, Cusumano D, Dinapoli N, Meldolesi E, Carano D, et al: Delta radiomics can predict distant metastasis in locally advanced rectal cancer: The challenge to personalize the cure. Front Oncol. 10:5950122020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, Sun K, Li L, Li B, Wang M and Tian J: The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics. 9:1303–1322. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mayerhoefer ME, Szomolanyi P, Jirak D, Materka A and Trattnig S: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application-oriented study. Med Phys. 36:1236–1243. 2009. View Article : Google Scholar : PubMed/NCBI | |
Collewet G, Strzelecki M and Mariette F: Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 22:81–91. 2004. View Article : Google Scholar : PubMed/NCBI | |
Daye D, Tabari A, Kim H, Chang K, Kamran SC, Hong TS, Kalpathy-Cramer J and Gee MS: Quantitative tumor heterogeneity MRI profiling improves machine learning-based prognostication in patients with metastatic colon cancer. Eur Radiol. 31:5759–5767. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li ZY, Wang XD, Li M, Liu XJ, Ye Z, Song B, Yuan F, Yuan Y, Xia CC, Zhang X and Li Q: Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer. World J Gastroenterol. 26:2388–2402. 2020. View Article : Google Scholar : PubMed/NCBI | |
Giannini V, Mazzetti S, Bertotto I, Chiarenza C, Cauda S, Delmastro E, Bracco C, Di Dia A, Leone F, Medico E, et al: Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features. Eur J Nucl Med Mol Imaging. 46:878–888. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Yang X, Shi Z, Yang Z, Du X, Zhao Z and Cheng X: Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 29:1211–1220. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yang Q, Zhang C, Sun J, He K, Xie Y, Zhang Y, Fu Y and Zhang H: Multiregional-Based magnetic resonance imaging radiomics combined with clinical data improves efficacy in predicting lymph node metastasis of rectal cancer. Front Oncol. 10:5857672021. View Article : Google Scholar : PubMed/NCBI | |
Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S and Tang A: Deep learning: A primer for radiologists. Radiographics. 37:2113–2131. 2017. View Article : Google Scholar : PubMed/NCBI | |
Parekh VS and Jacobs MA: Deep learning and radiomics in precision medicine. Expert Rev Precis Med Drug Dev. 4:59–72. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Zhang Y, Nie K, Sun X, Niu T, Yue N, Kwong T, Chang P, Chow D, Chen JH and Su MY: Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Magn Reson Imaging. 61:33–40. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu HT, Zhang XY, Shi YJ, Li XT and Sun YS: A deep learning model to predict the response to neoadjuvant chemoradiotherapy by the pretreatment apparent diffusion coefficient images of locally advanced rectal cancer. Front Oncol. 10:5743372020. View Article : Google Scholar : PubMed/NCBIPubMed/NCBI |